Communications in Mathematical Physics

, Volume 284, Issue 2, pp 481–507 | Cite as

Polynomial-Time Algorithm for Simulation of Weakly Interacting Quantum Spin Systems

  • Sergey Bravyi
  • David DiVincenzo
  • Daniel Loss


We describe an algorithm that computes the ground state energy and correlation functions for 2-local Hamiltonians in which interactions between qubits are weak compared to single-qubit terms. The running time of the algorithm is polynomial in n and δ−1, where n is the number of qubits, and δ is the required precision. Specifically, we consider Hamiltonians of the form \({H=H_0+ \epsilon V}\) , where H 0 describes non-interacting qubits, V is a perturbation that involves arbitrary two-qubit interactions on a graph of bounded degree, and \({\epsilon}\) is a small parameter. The algorithm works if \({|\epsilon|}\) is below a certain threshold value \({\epsilon_0}\) that depends only upon the spectral gap of H 0, the maximal degree of the graph, and the maximal norm of the two-qubit interactions. The main technical ingredient of the algorithm is a generalized Kirkwood-Thomas ansatz for the ground state. The parameters of the ansatz are computed using perturbative expansions in powers of \({\epsilon}\) . Our algorithm is closely related to the coupled cluster method used in quantum chemistry.


Ground State Energy Formal Power Series Small Eigenvalue Creation Operator Perturbative Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kempe J., Kitaev A., Regev O.: “The Complexity of the Local Hamiltonian Problem”. SIAM J. Computing 35(5), 1070–1097 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Oliveira, R., Terhal, B.M.: “The complexity of quantum spin systems on a two-dimensional square lattice”., 2005, to appear in Quant. Inf. Comput.
  3. 3.
    Kato T.: “Perturbation Theory for Linear Operators”. Springer-Verlag, New York (1966)Google Scholar
  4. 4.
    Yarotsky D.: “Perturbations of ground states in weakly interacting quantum spin systems”. J. Math. Phys. 45(6), 2134 (2004)zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Osborne T.: “Simulating adiabatic evolution of gapped spin systems”. Phys. Rev. A 75, 032321 (2007)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Abrikosov A., Gorkov L., Dzyaloshinski I.: “Methods of Quantum Field Theory in Statistical Physics”. Dover Publications Inc., New York (1975)Google Scholar
  7. 7.
    Lindgren I.: “The Rayleigh-Schrödinger perturbation and the linked-diagram theorem for a multi-configurational model space”. J. Phys. B 7(18), 2441 (1974)CrossRefADSGoogle Scholar
  8. 8.
    Kirkwood J., Thomas L.: “Expansions and Phase Transitions for the Ground State of Quantum Ising Lattice Systems”. Commun. Math. Phys. 88, 569–580 (1983)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Datta N., Kennedy T.: “Expansions for one quasiparticle states in spin 1/2 systems”. J. Stat. Phys. 108, 373 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lang S.: “Complex Analysis”. Graduate Texts in Mathematics 103. Springer-Verlag, New York (1985)Google Scholar
  11. 11.
    Anderson P.W.: “Infrared Catastrophe in Fermi Gases with Local Scattering Potentials”. Phys. Rev. Lett. 18, 1049 (1967)CrossRefADSGoogle Scholar
  12. 12.
    Verstraete F., Wolf M.M., Perez-Garcia D., Cirac J.I.: “Criticality, the area law, and the computational power of PEPS”. Phys. Rev. Lett. 96, 220601 (2006)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Coester F.: “Bound states of a many-particle system”. Nucl. Phys. 7, 421 (1958)CrossRefGoogle Scholar
  14. 14.
    Crawford T., Schaefer H.: “An Introduction to Coupled Cluster Theory for Computational Chemists”. Rev. Comput. Chem. 14, 33–36 (1999)CrossRefGoogle Scholar
  15. 15.
    Farnell, D.J.J., Bishop, R.F.: “The Coupled Cluster Method Applied to the XXZ Model on the Square Lattice”., 2006
  16. 16.
    Datta N., Fernández R., Fröhlich J.: “Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states”. J. Stat. Phys. 84, 455–534 (1996)zbMATHCrossRefADSGoogle Scholar
  17. 17.
    Borgs C., Kotecký R., Ueltschi D.: “Low temperature phase diagrams for quantum perturbations of classical spin systems”. Commun. Math. Phys. 181, 409–446 (1996)zbMATHCrossRefADSGoogle Scholar
  18. 18.
    Hastings M., Koma T.: “Spectral Gap and Exponential Decay of Correlations”. Commun. Math. Phys. 265, 781 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Bravyi S., Hastings M., Verstraete F.: “Lieb-Robinson bounds and the generation of correlations and topological quantum order”. Phys. Rev. Lett. 97, 050401 (2006)CrossRefADSGoogle Scholar
  20. 20.
    Latorre J.I., Rico E., Vidal G.: “Ground state entanglement in quantum spin chains”. Quant. Inf. Comput. 4, 48 (2004)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Bravyi, S., DiVincenzo, D.P., Loss, D., Terhal, B.M.: “Simulation of Many-Body Hamiltonians using Perturbation Theory with Bounded-Strength Interactions”., 2008
  22. 22.
    Bhatia R.: “Matrix Analysis”. Graduate Texts in Mathematics 169. Springer-Verlag, New York (1997)Google Scholar
  23. 23.
    Aliferis P., Gottesman D., Preskill J.: “Accuracy threshold for postselected quantum computation”. Quant. Inf. Comput. 8, 181 (2008)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA
  2. 2.Department of PhysicsUniversity of BaselBaselSwitzerland

Personalised recommendations