Communications in Mathematical Physics

, Volume 282, Issue 3, pp 663–695 | Cite as

Universality of the REM for Dynamics of Mean-Field Spin Glasses

Article

Abstract

We consider a version of Glauber dynamics for a p-spin Sherrington– Kirkpatrick model of a spin glass that can be seen as a time change of simple random walk on the N-dimensional hypercube. We show that, for all p ≥ 3 and all inverse temperatures β > 0, there exists a constant γβ ,p > 0, such that for all exponential time scales, exp(γ N), with γ < γβ ,p, the properly rescaled clock process (time-change process) converges to an α-stable subordinator where α = γ/β2 < 1. Moreover, the dynamics exhibits aging at these time scales with a time-time correlation function converging to the arcsine law of this α-stable subordinator. In other words, up to rescaling, on these time scales (that are shorter than the equilibration time of the system) the dynamics of p-spin models ages in the same way as the REM, and by extension Bouchaud’s REM-like trap model, confirming the latter as a universal aging mechanism for a wide range of systems. The SK model (the case p = 2) seems to belong to a different universality class.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BBG02.
    Ben Arous G., Bovier A., Gayrard V.: Aging in the random energy model. Phys. Rev. Lett. 88(8), 087201 (2002)CrossRefADSGoogle Scholar
  2. BBG03a.
    Ben Arous G., Bovier A., Gayrard V.: Glauber dynamics of the random energy model. I. Metastable motion on the extreme states. Commun. Math. Phys. 235(3), 379–425 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  3. BBG03b.
    Ben Arous G., Bovier A., Gayrard V.: Glauber dynamics of the random energy model. II. Aging below the critical temperature. Commun. Math. Phys. 236(1), 1–54 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  4. BČ05.
    Ben Arous G., Černý J.: Bouchaud’s model exhibits two aging regimes in dimension one. Ann. Appl. Probab. 15(2), 1161–1192 (2005)MATHCrossRefMathSciNetGoogle Scholar
  5. BČ06.
    Ben Arous, G., Černý, J.: Dynamics of trap models. In: École d’Été de Physique des Houches, Session LXXXIII “Mathematical Statistical Physics”, Amsterdam: Elsevier, 2006, pp. 331–394Google Scholar
  6. BČ07.
    Ben Arous G., Černý J.: Scaling limit for trap models on \({{\mathbb Z}^d}\). Ann. Probab. 35(6), 2356–2384 (2007)MATHCrossRefMathSciNetGoogle Scholar
  7. BČ08.
    Ben Arous G., Černý J.: The arcsine law as a universal aging scheme for trap models. Commun. Pure Appl. Math. 61(3), 289–329 (2008)MATHCrossRefGoogle Scholar
  8. BCKM98.
    Bouchaud, J.-P., Cugliandolo, L., Kurchan, J., Mézard, M.: Out of equilibrium dynamics in spin-glasses and other glassy systems. In: A.P. Young, ed. Spin glasses and random fields. Singapore: World Scientific, 1998Google Scholar
  9. BČM06.
    Ben Arous G., Černý J., Mountford T.: Aging in two-dimensional Bouchaud’s model. Probab. Theory Related Fields 134(1), 1–43 (2006)MATHCrossRefMathSciNetGoogle Scholar
  10. BD95.
    Bouchaud J.-P., Dean D.S.: Aging on Parisi’s tree. J. Phys I(France) 5, 265 (1995)CrossRefGoogle Scholar
  11. BDG01.
    Ben Arous G., Dembo A., Guionnet A.: Aging of spherical spin glasses. Probab. Theory Related Fields 120(1), 1–67 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. BG06.
    Ben Arous, G., Gayrard, V.: Elementary potential theory on the hypercube. http://arXiv.org/list/math.PR/0611178, 2006
  13. BGK06.
    Ben Arous, G., Gayrard, V., Kuptsov, A.: A new REM conjecture. http://arXiv.org/list/math.PR/0612373, 2006
  14. Bil68.
    Billingsley, P.: Convergence of probability measures. New York: John Wiley & Sons Inc., 1968MATHGoogle Scholar
  15. BK06a.
    Bovier A., Kurkova I.: Local energy statistics in disordered systems: A proof of the local REM conjecture. Commun. Math. Phys. 263(2), 513–533 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  16. BK06b.
    Bovier A., Kurkova I.: A tomography of the GREM: beyond the REM conjecture. Commun. Math. Phys. 263(2), 535–552 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  17. BK07.
    Ben Arous, G., Kuptsov, A.: The limits of REM universality. In preparation, 2007Google Scholar
  18. BM04.
    Bauke H., Mertens S.: Universality in the level statistics of disordered systems. Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics) 70(2), 025102 (2004)ADSGoogle Scholar
  19. Bou92.
    Bouchaud J.-P.: Weak ergodicity breaking and aging in disordered systems. J. Phys. I (France) 2, 1705–1713 (1992)CrossRefGoogle Scholar
  20. Bov06.
    Bovier, A.: Statistical mechanics of disordered systems. Cambridge: Cambridge University Press, 2006MATHGoogle Scholar
  21. ČG08.
    Černý, J., Gayrard, V.: Hitting time of large subsets of the hypercube. to appear in Random Structures and Algorithms, 2008, doi:10.1002/rsa.20217, 2008
  22. Cha84.
    Chamberlin R.V.: Time decay of the thermoremanent magnetization in spin-glasses as a function of the time spent in the field-cooled state. Phys. Rev. B 30(9), 5393–5395 (1984)CrossRefADSGoogle Scholar
  23. DDOL85.
    De Dominicis C., Orland H., Lainée F.: Stretched exponential relaxation in systems with random free energies. J- Phys.(Paris). 46, L463–L466 (1985)Google Scholar
  24. Hoe63.
    Hoeffding W.: Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58, 13–30 (1963)MATHCrossRefMathSciNetGoogle Scholar
  25. Kal02.
    Kallenberg, O.: Foundations of modern probability. In: Probability and its Applications. New York: Springer-Verlag, 2002Google Scholar
  26. KH89.
    Koper G.J.M., Hilhorst H.J.: Nonexponential relaxation in the random energy model. Physica A 160, 1–23 (1989)CrossRefADSGoogle Scholar
  27. LSNB83.
    Lundgren L., Svedlindh P., Nordblad P., Beckman O.: Dynamics of the relaxation-time spectrum in a CuMn spin-glass. Phys. Rev. Lett. 51(10), 911–914 (1983)CrossRefADSGoogle Scholar
  28. LT91.
    Ledoux, M., Talagrand, M.: Probability in Banach spaces. Berlin: Springer-Verlag, 1991MATHGoogle Scholar
  29. Mat87.
    Matthews P.: Mixing rates for a random walk on the cube. SIAM J. Algebraic Discrete Methods 8(4), 746–752 (1987)MATHCrossRefMathSciNetGoogle Scholar
  30. Mat89.
    Matthews P.: Some sample path properties of a random walk on the cube. J. Theoret. Probab. 2(1), 129–146 (1989)MATHCrossRefMathSciNetGoogle Scholar
  31. She71.
    Shepp L.A.: First passage time for a particular Gaussian process. Ann. Math. Statist. 42, 946–951 (1971)MATHCrossRefMathSciNetGoogle Scholar
  32. Sle61.
    Slepian D.: First passage time for a particular Gaussian process. Ann. Math. Statist. 32, 610–612 (1961)MATHCrossRefMathSciNetGoogle Scholar
  33. Tal03.
    Talagrand M.: Spin glasses: a challenge for mathematicians. Berlin: Springer-Verlag, 2003Google Scholar
  34. Whi02.
    Whitt, W.: Stochastic-process limits. New York: Springer-Verlag, 2002MATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Gérard Ben Arous
    • 1
  • Anton Bovier
    • 2
    • 3
  • Jiří Černý
    • 4
  1. 1.Courant Institute of the Mathematical SciencesNew York UniversityNew YorkUSA
  2. 2.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
  3. 3.Mathematics InstituteBerlin University of TechnologyBerlinGermany
  4. 4.Department of MathematicsETH ZürichZürichSwitzerland

Personalised recommendations