Communications in Mathematical Physics

, Volume 282, Issue 3, pp 697–719 | Cite as

Decay and Non-Decay of the Local Energy for the Wave Equation on the De Sitter–Schwarzschild Metric



We describe an expansion of the solution of the wave equation on the De Sitter–Schwarzschild metric in terms of resonances. The principal term in the expansion is due to a resonance at 0. The error term decays polynomially if we permit a logarithmic derivative loss in the angular directions and exponentially if we permit an \({\varepsilon}\) derivative loss in the angular directions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandrova I., Bony J.-F., Ramond T.: Semiclassical scattering amplitude at the maximum point of the potential. Asymptotic Analysis 58(1–2), 57–125 (2008)Google Scholar
  2. 2.
    Amrein, W., Boutet de Monvel, A., Georgescu, V.: C 0 -groups, commutator methods and spectral theory of N-body Hamiltonians, Progress in Mathematics, Vol. 135, Basel-Boston: Birkhäuser Verlag, 1996Google Scholar
  3. 3.
    Bachelot A., Motet-Bachelot A.: Les résonances d’un trou noir de Schwarzschild. Ann. Inst. H. Poincaré Phys. Théor. 59(1), 3–68 (1993)MATHMathSciNetGoogle Scholar
  4. 4.
    Blue, P., Soffer, A.: Improved decay rates with small regularity loss for the wave equation about a Schwarzschild black hole., 2006
  5. 5.
    Blue P., Sterbenz J.: Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Commun. Math. Phys. 268(2), 481–504 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Bony J.-F., Michel L.: Microlocalization of resonant states and estimates of the residue of the scattering amplitude. Commun. Math. Phys. 246(2), 375–402 (2004)MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Burq N.: Smoothing effect for Schrödinger boundary value problems. Duke Math. J. 123(2), 403–427 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Burq N., Zworski M.: Resonance expansions in semi-classical propagation. Commun. Math. Phys. 223(1), 1–12 (2001)MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Chandrasekhar, S.: The mathematical theory of black holes. International Series of Monographs on Physics, Vol. 69, The Clarendon Press, Oxford: Oxford University Press, 1992Google Scholar
  10. 10.
    Christiansen T., Zworski M.: Resonance wave expansions: two hyperbolic examples. Commun. Math. Phys. 212(2), 323–336 (2000)MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Christodoulou, D., Klainerman, S.: The global nonlinear stability of the Minkowski space. Princeton Mathematical Series, Vol. 41, Princeton, NJ: Princeton University Press, 1993Google Scholar
  12. 12.
    Dafermos M., Rodnianski I.: A proof of Price’s law for the collapse of a self-gravitating scalar field. Invent. Math. 162(2), 381–457 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Finster F., Kamran N., Smoller J., Yau S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys. 264(2), 465–503 (2006)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Guillarmou, C.: Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds. Duke Math. J. 129(1), 1–37 (2005)Google Scholar
  15. 15.
    Ikawa M.: Decay of solutions of the wave equation in the exterior of two convex obstacles. Osaka J. Math. 19(3), 459–509 (1982)MATHMathSciNetGoogle Scholar
  16. 16.
    Lax, P., Phillips, R.: Scattering theory, Second ed. With appendices by C. Morawetz and G. Schmidt Pure and Applied Mathematics, Vol. 26, London-New York: Academic Press Inc., 1989Google Scholar
  17. 17.
    Martinez A.: Resonance free domains for non globally analytic potentials. Ann. Henri Poincaré 3(4), 739–756 (2002)MATHCrossRefGoogle Scholar
  18. 18.
    Mazzeo R., Melrose R.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75(2), 260–310 (1987)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Melrose R., Sjöstrand J.: Singularities of boundary value problems. I. Commun. Pure Appl. Math. 31(5), 593–617 (1978)MATHCrossRefGoogle Scholar
  20. 20.
    Mourre E.: Absence of singular continuous spectrum for certain selfadjoint operators. Commun. Math. Phys. 78(3), 391–408 (1980)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Nakamura S., Stefanov P., Zworski M.: Resonance expansions of propagators in the presence of potential barriers. J. Funct. Anal. 205(1), 180–205 (2003)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Ralston J.: Solutions of the wave equation with localized energy. Commun. Pure Appl. Math. 22, 807–823 (1969)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Reed, M., Simon, B.: Methods of modern mathematical physics. IV. New York: Academic Press, 1978Google Scholar
  24. 24.
    Reed, M., Simon, B.: Methods of modern mathematical physics. III. New York: Academic Press, 1979Google Scholar
  25. 25.
    Sá Barreto A., Zworski M.: Distribution of resonances for spherical black holes. Math. Res. Lett. 4(1), 103–121 (1997)MATHMathSciNetGoogle Scholar
  26. 26.
    Sjöstrand, J.: Semiclassical resonances generated by nondegenerate critical points. In: Pseudodifferential operators (Oberwolfach, 1986), Lecture Notes in Math., Vol. 1256, Berlin-Heidelberg-New York: Springer, 1987, pp. 402–429Google Scholar
  27. 27.
    Sjöstrand, J.: A trace formula and review of some estimates for resonances, Microlocal analysis and spectral theory (Lucca, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 490, Dordrecht: Kluwer Acad. Publ., 1997, pp. 377–437Google Scholar
  28. 28.
    Sjöstrand, J.: Lectures on resonances. Preprint available on, 2007, pp. 1–169
  29. 29.
    Sjöstrand J., Zworski M.: Complex scaling and the distribution of scattering poles. J. Amer. Math. Soc. 4(4), 729–769 (1991)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Tang S.-H., Zworski M.: From quasimodes to resonances. Math. Res. Lett. 5(3), 261–272 (1998)MATHMathSciNetGoogle Scholar
  31. 31.
    Tang S.-H., Zworski M.: Resonance expansions of scattered waves. Comm. Pure Appl. Math. 53(10), 1305–1334 (2000)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Tang, S.-H., Zworski, M.: Potential scattering on the real line. Preprint available on, 2007, pp. 1–46
  33. 33.
    Vaĭnberg, B.: Asymptotic methods in equations of mathematical physics, Gordon & Breach Science Publishers, 1989Google Scholar
  34. 34.
    Zworski M.: Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces. Invent. Math. 136(2), 353–409 (1999)MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut de Mathématiques de Bordeaux, UMR 5251 du CNRS, Université de Bordeaux ITalence cedexFrance

Personalised recommendations