An Expansion for Polynomials Orthogonal Over an Analytic Jordan Curve

Article

Abstract

We consider polynomials that are orthogonal over an analytic Jordan curve L with respect to a positive analytic weight, and show that each such polynomial of sufficiently large degree can be expanded in a series of certain integral transforms that converges uniformly in the whole complex plane. This expansion yields, in particular and simultaneously, Szegő’s classical strong asymptotic formula and a new integral representation for the polynomials inside L. We further exploit such a representation to derive finer asymptotic results for weights having finitely many singularities (all of algebraic type) on a thin neighborhood of the orthogonality curve. Our results are a generalization of those previously obtained in [7] for the case of L being the unit circle.

References

  1. 1.
    Akhiezer N.I.: Orthogonal polynomials on several intervals. Soviet Math. Dokl. 1, 989–992 (1960)MATHMathSciNetGoogle Scholar
  2. 2.
    Akhiezer N.I., Tomchuk Yu. Ya.: On the theory of orthogonal polynomials over several intervals (in Russian). Dokl. Akad. Nauk SSSR 138, 743–746 (1961)MathSciNetGoogle Scholar
  3. 3.
    Aptekarev A.I.: Asymptotic properties of polynomials orthogonal on a system of contours and periodic motions of Toda chains. Mat. Sb. 125, 231–258 (1984)MathSciNetGoogle Scholar
  4. 4.
    Davis, P.J.: The Schwarz function and its applications. The Carus Mathematical Monographs Vol. 17. Washington, DC: The Mathematical Association of America, 1974Google Scholar
  5. 5.
    Kaliaguine V.A.: On asymptotics of L p extremal polynomials on a complex curve (0 < p < ∞). J. Approx. Theory 74, 226–236 (1993)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kaliaguine V.A.: A note on the asymptotics of orthogonal polynomials on a complex arc: the case of a measure with a discrete part. J. Approx. Theory 80, 138–145 (1995)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Martínez-Finkelshtein A., McLaughlin K.T.-R., Saff E.B.: Szegő orthogonal polynomials with respect to an analytic weight: canonical representation and strong asymptotics. Constr. Approx. 24, 319–363 (2006)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Miña-Díaz, E.: An asymptotic integral representation for Carleman orthogonal polynomials. Int. Math. Res. Not. vol. 2008, rnn065, 38pp. (2008) doi:10.1093/imrn/rnn065
  9. 9.
    Peherstorfer F.: On Bernstein-Szegő orthogonal polynomials on several intervals. SIAM J. Math. Anal. 21, 461–482 (1990)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Peherstorfer F.: Zeros of polynomials orthogonal on several intervals. Int. Math. Res. Not. 7, 361–385 (2003)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Peherstorfer F., Yuditskii P.: Asymptotic behavior of polynomials orthonormal on a homogeneous set. J. Anal. Math. 89, 113–154 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Peherstorfer F.: On the zeros of orthogonal polynomials: the elliptic case. Constr. Approx. 20, 377–397 (2004)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lukashov A.L., Peherstorfer F.: Zeros of polynomials orthogonal on two arcs of the unit circle. J. Approx. Theory 132, 42–71 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Rudin, W.: Real and complex analysis. 3rd ed., New York, McGraw-Hill, 1986Google Scholar
  15. 15.
    Saff, E.B., Totik, V.: Logarithmic potentials with external fields. Berlin: Springer-Verlag, 1997MATHGoogle Scholar
  16. 16.
    Simon B.: Fine structure of the zeros of orthogonal polynomials, I. A tale of two pictures. ETNA 25, 328–368 (2006)MATHGoogle Scholar
  17. 17.
    Suetin P.K.: Fundamental properties of polynomials orthogonal on a contour. Russ. Math. Surv. 21, 35–83 (1966)MATHCrossRefGoogle Scholar
  18. 18.
    Szabados J.: On some problems connected with polynomials orthogonal on the complex unit circle. Act. Math. Scien. Hung. 33, 197–210 (1979)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Szegő, G.: Orthogonal Polynomials. Amer. Math. Soc. Colloq. Publ. Vol. 23, Providence, RI, Amer. Math. Soc., 4th ed., 1975Google Scholar
  20. 20.
    Szegő G.: Über orthogonale polynome, die zu einer gegebenen Kurve der Komplexen Ebene gehören. Math. Z. 9, 218–270 (1921)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Widom H.: Extremal polynomials associated with a system of curves in the complex plane. Adv. Math. 3, 127–232 (1969)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Widom H.: Polynomials associated with measures in the complex plane. J. Math. Mech. 16, 997–1013 (1967)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIndiana-Purdue University Fort WayneFort WayneUSA

Personalised recommendations