Communications in Mathematical Physics

, Volume 284, Issue 1, pp 1–49 | Cite as

WZW Orientifolds and Finite Group Cohomology

  • Krzysztof GawȩdzkiEmail author
  • Rafał R. Suszek
  • Konrad Waldorf


The simplest orientifolds of the WZW models are obtained by gauging a \({\mathbb{Z}_2}\) symmetry group generated by a combined involution of the target Lie group G and of the worldsheet. The action of the involution on the target is by a twisted inversion \({g\mapsto(\zeta g)^{-1}}\), where ζ is an element of the center of G. It reverses the sign of the Kalb-Ramond torsion field H given by a bi-invariant closed 3-form on G. The action on the worldsheet reverses its orientation. An unambiguous definition of Feynman amplitudes of the orientifold theory requires a choice of a gerbe with curvature H on the target group G, together with a so-called Jandl structure introduced in [31]. More generally, one may gauge orientifold symmetry groups \({\Gamma=\mathbb{Z}_2\times Z}\) that combine the \({\mathbb{Z}_2}\)-action described above with the target symmetry induced by a subgroup Z of the center of G. To define the orientifold theory in such a situation, one needs a gerbe on G with a Z-equivariant Jandl structure. We reduce the study of the existence of such structures and of their inequivalent choices to a problem in group-Γ cohomology that we solve for all simple simply connected compact Lie groups G and all orientifold groups \({\Gamma=\mathbb{Z} _2\times Z}\).


Cohomology Class Dynkin Diagram Equivariant Structure Feynman Amplitude Orbifold Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez O.: Topological quantization and cohomology. Commun. Math. Phys. 100, 279–309 (1985)zbMATHCrossRefADSGoogle Scholar
  2. 2.
    Bachas C., Couchoud N., Windey P.: Orientifolds of the 3-sphere. JHEP 0112, 003 (2001)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Brown, K.S.: Cohomology of Groups. Graduate Texts in Mathematics 87, New York: Springer-Verlag, 1982Google Scholar
  4. 4.
    Brunner I.: On orientifolds of WZW models and their relation to geometry. JHEP 0201, 007 (2002)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Brunner I., Hori K.: Notes on orientifolds of rational conformal field theories. JHEP 0407, 023 (2004)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Brylinski, J.-L.: Loop Spaces, Characteristic Classes, and Geometric Quantization. Progress in Mathematics 107, Boston: Birkhäuser, 1993Google Scholar
  7. 7.
    Chatterjee, D.S.: On gerbs. Ph.D. thesis, Trinity College, Cambridge, 1998, available online at, 1998
  8. 8.
    Felder G., Gawędzki K., Kupiainen A.: Spectra of Wess–Zumino–Witten models with arbitrary simple groups. Commun. Math. Phys. 117, 127–158 (1988)zbMATHCrossRefADSGoogle Scholar
  9. 9.
    Fjelstad, J., Fuchs, J., Runkel, I., Schweigert, C.: Topological and conformal field theory as Frobenius algebras. In: Contemp. Math. 431, Providence RI: Amer. Math. Soc., 2007, pp. 225–248Google Scholar
  10. 10.
    Fuchs J., Huiszoon L.R., Schellekens A.N., Schweigert C., Walcher J.: Boundaries, crosscaps and simple currents. Phys. Lett. B495, 427–434 (2000)ADSMathSciNetGoogle Scholar
  11. 11.
    Gajer P.: Geometry of Deligne cohomology. Invent. Math. 127, 155–207 (1997)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Gawȩdzki, K.: Topological actions in two-dimensional quantum field theory. In: ’t Hooft, G., Jaffe, A., Mack, G., Mitter, P.K., Stora, R. (eds.), Non-perturbative Quantum Field Theory. Proceedings, Cargèse 1987, New York: Plenum Press, 1988, pp. 101–142Google Scholar
  13. 13.
    Gawȩdzki K.: Abelian and non-Abelian branes in WZW models and gerbes. Commun. Math. Phys. 258, 23–73 (2005)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Gawȩdzki K., Reis N.: WZW branes and gerbes. Rev. Math. Phys. 14, 1281–1334 (2002)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Gawȩdzki K., Reis N.: Basic gerbe over non simply connected compact groups. J. Geom. Phys. 50, 28–55 (2004)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Gaw̧dzki, K., Suszek, R.R., Waldorf, K.: In preparationGoogle Scholar
  17. 17.
    Huiszoon L.R., Schellekens A.N.: Crosscaps, boundaries and T-duality. Nucl. Phys. B584, 705–718 (2000)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Huiszoon L.R., Schellekens A.N., Sousa N.: Klein bottles and simple currents. Phys. Lett. B470, 95–102 (1999)ADSMathSciNetGoogle Scholar
  19. 19.
    Huiszoon L.R., Schellekens A.N., Sousa N.: Open descendants of non-diagonal invariants. Nucl. Phys. B575, 401–415 (2000)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Kapustin A.: D-branes in a topologically nontrivial B-field. Adv. Theor. Math. Phys. 4, 127–154 (2000)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Lupercio E., Uribe B.: An introduction to gerbes on orbifolds. Annales Math. Blaise Pascal 11, 155–180 (2004)zbMATHMathSciNetGoogle Scholar
  22. 22.
    McCleary, J.: A User’s Guide to Spectral Sequences. Cambridge Studies in Advanced Mathematics 58, Cambridge: Cambridge University Press, 2001Google Scholar
  23. 23.
    Meinrenken E.: The basic gerbe over a compact simple Lie group. L’Enseignement Mathématique 49, 307–333 (2003)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Murray M.K.: Bundle gerbes. J. London Math. Soc. (2) 54, 403–416 (1996)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Murray M.K., Stevenson D.: Bundle gerbes: stable isomorphisms and local theory. J. London Math. Soc. (2) 62, 925–937 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Pradisi, G., Sagnotti, A.: New developments in open-string theories., 1992
  27. 27.
    Pradisi G., Sagnotti A., Stanev Y.: Planar duality in SU(2) WZW models. Phys. Lett. B354, 279–286 (1995)ADSMathSciNetGoogle Scholar
  28. 28.
    Pradisi G., Sagnotti A., Stanev Y.: The open descendants of nondiagonal SU(2) WZW models. Phys. Lett. B356, 230–238 (1995)ADSMathSciNetGoogle Scholar
  29. 29.
    Reis, N.: Interprétation géométrique des théories conformes des champs à bord. Ph.D. thesis, école Normale Supérieure de Lyon, 2003Google Scholar
  30. 30.
    Sah C.-H.: Cohomology of split group extensions. J. Algebra 29, 255–302 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Schreiber U., Schweigert C., Waldorf K.: Unoriented WZW models and holonomy of bundle gerbes. Commun. Math. Phys. 274, 31–64 (2007)zbMATHCrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Schwarz J.H.: Superstring theory. Phys. Rept. 89, 223–322 (1982)zbMATHCrossRefADSGoogle Scholar
  33. 33.
    Vafa C.: Modular invariance and discrete torsion on orbifolds. Nucl. Phys. B273, 592–606 (1986)CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Weibel, C.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics 38, Cambridge: Cambridge University Press, 1995Google Scholar
  35. 35.
    Witten E.: Non-Abelian bosonization in two dimensions. Commun. Math. Phys. 92, 455–472 (1984)zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Krzysztof Gawȩdzki
    • 1
    Email author
  • Rafał R. Suszek
    • 2
  • Konrad Waldorf
    • 3
  1. 1.Laboratoire de PhysiqueENS-LyonLyonFrance
  2. 2.Department of MathematicsKing’s College London StrandLondonUK
  3. 3.Fachbereich MathematikUniversität HamburgHamburgGermany

Personalised recommendations