Communications in Mathematical Physics

, Volume 283, Issue 2, pp 305–342 | Cite as

Torus n-Point Functions for \({\mathbb{R}}\) -graded Vertex Operator Superalgebras and Continuous Fermion Orbifolds

  • Geoffrey Mason
  • Michael P. Tuite
  • Alexander Zuevsky
Article

Abstract

We consider genus one n-point functions for a vertex operator superalgebra with a real grading. We compute all n-point functions for rank one and rank two fermion vertex operator superalgebras. In the rank two fermion case, we obtain all orbifold n-point functions for a twisted module associated with a continuous automorphism generated by a Heisenberg bosonic state. The modular properties of these orbifold n-point functions are given and we describe a generalization of Fay’s trisecant identity for elliptic functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.
    Borcherds R.: Vertex algebras, Kac-Moody algebras and the Monster. Proc. Natl. Acad. Sci. U.S.A. 83, 3068–3071 (1986)CrossRefMathSciNetADSGoogle Scholar
  2. DLM1.
    Dong C., Li H., Mason G.: Modular-invariance of trace functions in orbifold theory and generalized moonshine. Commun. Math. Phys. 214, 1–56 (2000)MATHCrossRefMathSciNetADSGoogle Scholar
  3. DLM2.
    Dong, C., Lin, Z., Mason, G.: On Vertex operator algebras as sl 2-modules. Arasu, K. T. (ed.) et al., In: Groups, difference sets, and the Monster. Proceedings of a special research quarter, Columbus, OH, USA, Spring 1993. Ohio State Univ. Math. Res. Inst. Publ. 4, Berlin: Walter de Gruyter, pp. 349–362 (1996)Google Scholar
  4. DM.
    Dong C., Mason G.: Shifted Vertex Operator Algebras. Math. Proc. Cambridge Philos. Soc. 141, 67–80 (2006)MATHCrossRefMathSciNetADSGoogle Scholar
  5. DZ1.
    Dong C., Zhao Z.: Modularity in orbifold theory for vertex operator superalgebras. Commun. Math. Phys. 260, 227–256 (2005)MATHCrossRefMathSciNetADSGoogle Scholar
  6. DZ2.
    Dong, C., Zhao, Z.: Modularity of trace functions in orbifold theory for \({\mathbb{Z}}\) -graded vertex operator superalgebras. http://arxiv.org/list/math.QA/0601571, 2006
  7. EO.
    Eguchi T., Ooguri H.: Chiral bosonization on a Riemann surface. Phys. Lett. B187, 127–134 (1987)MathSciNetADSGoogle Scholar
  8. Fa.
    Fay, J.D.: Theta functions on Riemann surfaces. Lecture Notes on Mathematics 352, New York:Springer-Verlag, 1973Google Scholar
  9. FFR.
    Feingold, A.J., Frenkel, I.B., Reis, J.F.X.: Spinor construction of vertex operator algebras and \({E_{8}^{(1)}}\). Contemp. Math. 121, Providence, RI: Amer. Math. Soc., 1991Google Scholar
  10. FHL.
    Frenkel, I., Huang, Y-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc. 104(494), Providence, RI: Amer. Math. Soc., 1993Google Scholar
  11. FK.
    Farkas, H., Kra, I.M.: Theta constants, Riemann surfaces and the modular group. Graduate Studies in Mathematics, 37. Providence, RI: Ameri. Math. Soc., 2001Google Scholar
  12. FLM.
    Frenkel I., Lepowsky J., Meurman A.: Vertex operator algebras and the Monster. Academic Press, New York (1988)MATHGoogle Scholar
  13. FMS.
    Di Francesco Ph., Mathieu P., Sénéchal D.: Conformal field theory Graduate Texts in Contemporary Physics. Springer-Verlag, New York (1997)Google Scholar
  14. Ka.
    Kac, V.: Vertex Operator Algebras for Beginners. University Lecture Series, Vol. 10, Providence, RI: Ameri. Math. Soc., 1998Google Scholar
  15. KZ.
    Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms, The Moduli Space of Curves (Texel Island, 1994), Progr. in Math. 129, Boston: Birkhauser, 1995Google Scholar
  16. La.
    Lang, S.: Elliptic functions. With an appendix by J. Tate. Second edition. Graduate Texts in Mathematics, 112. New York: Springer-Verlag, 1987Google Scholar
  17. Li.
    Li, H.: Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, Contemp. Math. AMS. 193, Providence, RI: Ameri. Math. Soc., 1996, pp. 203–236Google Scholar
  18. MN1.
    Matsuo, A., Nagatomo, K.: Axioms for a Vertex Algebra and the locality of quantum fields. Math. Soc. Japan Memoirs 4, Tokyo: Math. Soc. of Japan, 1999Google Scholar
  19. MN2.
    Matsuo A., Nagatomo K.: A note on free bosonic vertex algebras and its conformal vector. J. Alg. 212, 395–418 (1999)MATHCrossRefMathSciNetGoogle Scholar
  20. MT1.
    Mason G., Tuite M.P.: Torus chiral n-point functions for free boson and lattice vertex operator algebras. Commun. Math. Phys. 235, 47–68 (2003)MATHCrossRefMathSciNetADSGoogle Scholar
  21. MT2.
    Mason G., Tuite M.P.: On genus two Riemann surfaces formed from sewn tori. Commun. Math. Phys. 270, 587–648 (2007)MATHCrossRefMathSciNetADSGoogle Scholar
  22. MT3.
    Mason, G., Tuite, M.P.: The genus two partition function for free bosonic and lattice vertex operator algebras. http://arxiv.org/list/math.QA/07120628, 2007
  23. Mu.
    Mumford D.: Tata lectures on Theta I. Birkhäuser, Boston (1983)MATHGoogle Scholar
  24. P.
    Polchinski J.: String Theory, Volumes I and II. Cambridge University Press, Cambridge (1998)Google Scholar
  25. R1.
    Raina A. K.: Fay’s trisecant identity and conformal field theory. Commun. Math. Phys. 122, 625–641 (1989)CrossRefADSGoogle Scholar
  26. R2.
    Raina A.K.: An algebraic geometry study of the b-c system with arbitrary twist fields and arbitrary statistics. Commun. Math. Phys. 140, 373–397 (1991)MATHCrossRefMathSciNetADSGoogle Scholar
  27. RS.
    Sen S., Raina A.K.: Grassmannians, multiplicative Ward identities and theta function identities. Phys. Lett. B 203(3), 256–262 (1988)CrossRefMathSciNetADSGoogle Scholar
  28. Se.
    Serre J-P.: A course in arithmetic. Springer-Verlag, Berlin (1978)MATHGoogle Scholar
  29. T.
    Tuite M.P.: Genus two meromorphic conformal field theory. CRM Proceedings and Lecture Notes 30, 231–251 (2001)MathSciNetGoogle Scholar
  30. TUY.
    Tsuchiya A., Ueno K., Yamada Y.: Conformal field theory on universal family of stable curves with gauge symmetries. Adv. Stud. Pure. Math. 19, 459–566 (1989)MathSciNetGoogle Scholar
  31. TZ.
    Tuite, M.P., Zuevsky, A.: Shifting, twisting and intertwining Heisenberg modules. To appearGoogle Scholar
  32. Z.
    Zhu Y: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9, 237–302 (1996)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Geoffrey Mason
    • 1
  • Michael P. Tuite
    • 2
  • Alexander Zuevsky
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaSanta CruzUSA
  2. 2.Department of Mathematical PhysicsNational University of IrelandGalwayIreland

Personalised recommendations