Advertisement

Communications in Mathematical Physics

, Volume 282, Issue 2, pp 469–518 | Cite as

Fluctuation Relations for Diffusion Processes

  • Raphaël Chetrite
  • Krzysztof Gawȩdzki
Article

Abstract

The paper presents a unified approach to different fluctuation relations for classical nonequilibrium dynamics described by diffusion processes. Such relations compare the statistics of fluctuations of the entropy production or work in the original process to the similar statistics in the time-reversed process. The origin of a variety of fluctuation relations is traced to the use of different time reversals. It is also shown how the application of the presented approach to the tangent process describing the joint evolution of infinitesimally close trajectories of the original process leads to a multiplicative extension of the fluctuation relations.

Keywords

Entropy Production Time Inversion Langevin Dynamic Deterministic Dynamic Fluctuation Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balkovsky, E., Falkovich, G., Fouxon, A.: Clustering of inertial particles in turbulent flows, http://arxiv.org/abs/chao-dyn/9912027 and Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett. 86, 2790–2793 (2001)Google Scholar
  2. 2.
    Bandi, M.M., Cressman Jr., J.R., Goldburg, W.I.: Test of the Fluctuation Relation in lagrangian turbulence on a free surface. http://arxiv.org/abs/0607037, 2006
  3. 3.
    Bec J.: Multifractal concentrations of inertial particles in smooth random flows. J. Fluid Mech. 528, 255–277 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Bochkov, G.N., Kuzovlev, Yu.E.: On general theory of thermal fluctuations in nonlinear systems. Sov. Phys. JETP 45, 125–130 (1977); Zh. Eksp. Teor. Fiz. 72, 238 (1977)Google Scholar
  5. 5.
    Bochkov, G.N., Kuzovlev, Yu.E.: Fluctuation-dissipation relations for nonequilibrium processes in open systems. Sov. Phys. JETP 49, 543 (1979); Zh. Eksp. Teor. Fiz. 76, 1071 (1979)Google Scholar
  6. 6.
    Bochkov, G.N., Kuzovlev, Yu.E.: Non-linear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics. I and II. Physica A 106, 443–479 and 480–520 (1981)Google Scholar
  7. 7.
    Bonetto F., Gallavotti G., Garrido P.L.: Chaotic principle: An experimental test. Physica D 105, 226–252 (1997)zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Bonetto F., Gallavotti G., Gentile G.: A fluctuation theorem in a random environment. Eng. Dynam. Sys. 28, 21–47 (2008)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Bonetto F., Gallavotti G., Giuliani A., Zamponi F.: Chaotic Hypothesis, Fluctuation Theorem and singularities. J. stat. Phys. 123, 39 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Chernyak, V., Chertkov, M., Jarzynski, C.: Path-integral analysis of fluctuation theorems for general Langevin processes. J. Stat. Mech. (2006) P08001Google Scholar
  11. 11.
    Chetrite R., Delannoy J.-Y., Gawȩdzki K.: Kraichnan flow in a square: an example of integrable chaos. J. Stat. Phys. 126, 1165–1200 (2007)zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Chetrite, R., Falkovich, G., Gawȩdzki, K.: In preparationGoogle Scholar
  13. 13.
    Chetrite, R., Horvai, P., Gawȩdzki, K.: In preparationGoogle Scholar
  14. 14.
    Ciliberto, S.: Experimental analysis of aging. In: Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter. eds. Barrat, J.-L. et al., Les Houches Summer School, vol. 77, Basel: Brkhäuser, 2003, pp. 555–604Google Scholar
  15. 15.
    Ciliberto S., Laroche C.: An experimental test of the Gallavotti-Cohen fluctuation theorem. J. de Phys. IV 8, 215 (1998)Google Scholar
  16. 16.
    Cohen E.G.D., Gallavotti G.: Note on two theorems in nonequilibrium statistical mechanics. J. Stat. Phys. 96, 1343–1349 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Collin D., Ritort F., Jarzynski C., Smith S.B., Tinoco I., Bustamante C.: Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231–234 (2005)CrossRefADSGoogle Scholar
  18. 18.
    Crooks G.E.: The entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721–2726 (1999)ADSGoogle Scholar
  19. 19.
    Crooks G.E.: Path ensembles averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361–2366 (2000)ADSGoogle Scholar
  20. 20.
    Cugliandolo L.F., Kurchan J., Peliti L.: Energy flow, partial equilibration and effective temperature in systems with slow dynamics. Phys. Rev. E 55, 3898–3914 (1997)ADSGoogle Scholar
  21. 21.
    Eckmann J.-P., Pillet C.-A., Rey-Bellet L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys. 201, 657–697 (1999)zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Eckmann J.-P., Pillet C.-A., Rey-Bellet L.: Entropy production in nonlinear, thermally driven hamiltonian systems. J. Stat. Phys. 95, 305–331 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404 and 3616 (1993)Google Scholar
  24. 24.
    Evans D.J., Morriss G.P.: Statistical Mechanics of NonEquilibrium Liquids. London: Academic Press, 1990Google Scholar
  25. 25.
    Evans D.J., Searles D.J.: Equlibrium microstates which generate the second law violating steady states. Phys. Rev. E 50, 1645 (1994)ADSGoogle Scholar
  26. 26.
    Evans D.J., Searles D.J.: The fluctuation theorem. Adv. in Phys. 51, 1529–1585 (2002)CrossRefADSGoogle Scholar
  27. 27.
    Eyink, G.L., Lebowitz, J.L., Spohn, H.: Microscopic origin of hydrodynamic behavior: entropy production and the steady state. In: Chaos, Soviet-American Perspectives in Nonlinear Science, ed. D.K. Campbell, Melville, NY: American Institute of Physics, 1990, pp. 367–397Google Scholar
  28. 28.
    Falkovich, G.: Private communicationGoogle Scholar
  29. 29.
    Falkovich G., Gawȩdzki K., Vergassola M.: Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913–975 (2001)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Fouxon, I., Horvai, P.: Fluctuation relation and pairing rule for Lyapunov exponents of inertial particles in turbulence. http://arxiv.org/abs/0705.0073, 2007
  31. 31.
    Gallavotti G.: Fluctuation patterns and conditional reversibility in nonequilibrium systems. Ann. Inst. H. Poincaré 70, 429 (1999)zbMATHMathSciNetGoogle Scholar
  32. 32.
    Gallavotti G.: Extension of Onsager’s reciprocity to large fields and the chaotic hypothesis. Phys. Rev. Lett. 77, 4334–4337 (1996)zbMATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Gallavotti G.: Fluctuation relation, fluctuation theorem, thermostats and entropy creation in non equilibrium statistical physics. CR-Physique 8, 486–494 (2007)CrossRefADSGoogle Scholar
  34. 34.
    Gallavotti G., Bonetto F., Gentile G.: Aspects of the Ergodic, Qualitative and Statistical Theory of Motion. Berlin: Springer, 2004zbMATHGoogle Scholar
  35. 35.
    Gallavotti G., Cohen E.D.G.: Dynamical ensembles in non-equilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995)CrossRefADSGoogle Scholar
  36. 36.
    Gallavotti G., Cohen E.D.G.: Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995)zbMATHCrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Garnier, N., Ciliberto, S.: Nonequilibrium fluctuations in a resistor. Phys. Rev. E 71, 060101(R)/1-4 (2005)Google Scholar
  38. 38.
    Giuliani A., Zamponi F., Gallavotti G.: Fluctuation relation beyond linear response theory. J. Stat. Phys. 119, 909–944 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Gaspard P.: Time-reversed dynamical entropy and irreversibility in Markovian random processes. J. Stat. Phys. 117, 599–615 (2004)zbMATHCrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Gawȩdzki, K.: Soluble models of turbulent transport. Warwick lecture notes, 2006Google Scholar
  41. 41.
    Halperin B.I.: Green’s functions for a particle in a one-dimensional random potential. Phys. Rev. 139, A104–A117 (1965)CrossRefADSMathSciNetGoogle Scholar
  42. 42.
    Hashminski, R.Z.: Stochastic Stability of Differential Equations. Alphen, Sijthoff and Noordhoff, 1980Google Scholar
  43. 43.
    Hatano T., Sasa S.: Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463–3466 (2001)CrossRefADSGoogle Scholar
  44. 44.
    Hayashi K., Sasa S.: Linear response theory in stochastic many-body systems revisited. Physica A 370, 407–429 (2006)ADSGoogle Scholar
  45. 45.
    Hendrix D.A., Jarzynski C.: A “fast growth” method of computing free energy differences. J. Chem. Phys. 114, 5974–5981 (2001)CrossRefADSGoogle Scholar
  46. 46.
    Hohenberg B.C., Halperin B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)CrossRefADSGoogle Scholar
  47. 47.
    Imparato, A., Peliti, L., Pesce, G., Rusciano, G., Sasso, A.: Work and heat probability distribution of an optically driven Brownian particle: Theory and experiments. Phys. Rev. E 76, 050101R (2007)Google Scholar
  48. 48.
    Jarzynski C.: A nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997)CrossRefADSGoogle Scholar
  49. 49.
    Jarzynski C.: Equilibrium free energy differences from nonequilibrium measurements: a master equation approach. Phys. Rev. E 56, 5018 (1997)ADSGoogle Scholar
  50. 50.
    Jarzynski C.: Equilibrium Free Energies from Nonequilibrium Processes. Acta Phys. Polonica B 29, 1609 (1998)ADSGoogle Scholar
  51. 51.
    Jarzynski C.: Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys. 98, 77 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Jarzynski, C.: Comparison of far-from-equilibrium work relations. http://arxiv.org/abs/0612305, 2006
  53. 53.
    Joubaud S., Garnier N., Ciliberto S.: Fluctuation theorems for harmonic oscillators. J. Stat. Math: Theorey and Exp. 09, P09018 (2007)CrossRefGoogle Scholar
  54. 54.
    Joubaud, S., Garnier, N., Douarche, F., Petrosyan, A., Ciliberto, S.: Experimental study of work fluctuations in a harmonic oscillator. http://arxiv.org/abs/0703695, 2007
  55. 55.
    Kunita H.: Stochastic Flows and Stochastic Differential Equations. Cambridge: Cambridge University Press, 1990zbMATHGoogle Scholar
  56. 56.
    Kurchan J.: Fluctuation theorem for stochastic dynamics. J. Phys. A 31, 3719 (1998)ADSMathSciNetGoogle Scholar
  57. 57.
    Kurchan, J.: Non-equilibrium work relations. http://arxiv.org/abs/0511073, 2005
  58. 58.
    Lebowitz J.L., Spohn H.: Stationary non-equilibrium states of infinite harmonic systems. Commun. Math. Phys. 54, 97–120 (1977)CrossRefADSMathSciNetGoogle Scholar
  59. 59.
    Lebowitz J., Spohn H.: A Gallavotti-Cohen type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Le Jan, Y., Raimond, O.: Integration of Brownian vector fields. Ann. Probab. 30 (2002), 826–873, and Flows, coalescence and noise. Ann. Probab. 32, 1247–1315 (2004)Google Scholar
  61. 61.
    Lifshitz I.M., Gredeskul S., Pastur L.: Introduction to the Theory of Disordered Systems. New York: Wiley, 1988Google Scholar
  62. 62.
    Kraichnan R.H.: Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11, 945–963 (1968)zbMATHCrossRefADSMathSciNetGoogle Scholar
  63. 63.
    Maes C.: The Fluctuation Theorem as a Gibbs Property. J. Stat. Phys. 95, 367–392 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Maes C.: On the origin and the use of fluctuation relations for the entropy. Séminaire Poincaré 2, 29–62 (2003)Google Scholar
  65. 65.
    Maes C., Natočný K.: Time reversal and entropy. J. Stat. Phys. 110, 269–310 (2003)zbMATHCrossRefGoogle Scholar
  66. 66.
    Maes, C., Natočný, K., Wynants, B.: Steady state statistics of driven diffusions. http://arxiv.org/abs/0708.0489, 2007
  67. 67.
    Oksendal, B.: Stochastic Differential Equations, 6th ed. Universitext, Berlin, Springer, 2003Google Scholar
  68. 68.
    Oono Y., Paniconi M.: Steady state thermodynamics. Prog. Theor. Phys. Suppl. 130, 29–44 (1998)CrossRefADSMathSciNetGoogle Scholar
  69. 69.
    Parisi G., Sourlas N.: Supersymmetric field theories and stochastic differential equations. Nucl. Phys. B 206, 321–331 (1982)CrossRefADSMathSciNetGoogle Scholar
  70. 70.
    Puglisi, A., Rondoni, L., Vulpiani, A.: Relevance of initial and final conditions for the Fluctuation Relation in Markov processes. J. Stat. Mech. (2006) P08010/1-22Google Scholar
  71. 71.
    Risken H.: The Fokker Planck Equation. Springer, Berlin (1989)zbMATHGoogle Scholar
  72. 72.
    Ritort F.: Work fluctuations and transient violations of the Second Law: perspectives in theory and experiments. Séminaire Poincaré 2, 63–87 (2003)Google Scholar
  73. 73.
    Ritort, F.: Nonequilibrium fluctuations in small systems: From physics to biology. http://arxiv.org/abs/0705.0455, to appear in Advances in Chemical Physics, Vol. 137, Wiley & Sons
  74. 74.
    Ruelle D.: Smooth Dynamics and New Theoretical Ideas in Nonequilibrium Statistical Mechanics. J. Stat. Phys. 95, 393–468 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Ruelle D.: Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Mechanics, 2nd Edition. Cambridge: Cambridge University Press, 2004Google Scholar
  76. 76.
    Searles D.J., Evans D.J.: Fluctuation theorem for stochastic systems. Phys. Rev. E 60, 159–164 (1999)ADSGoogle Scholar
  77. 77.
    Searles D.J., Rondoni L., Evans D.J.: The steady state fluctuation relation for the dissipation function. J. Stat. Phys. 128, 1337–1363 (2007)zbMATHCrossRefADSMathSciNetGoogle Scholar
  78. 78.
    Speck T., Seifert U.: Integral fluctuation theorem for the housekeeping heat. J. Phys. A: Math. Gen. 38, L581–L588 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  79. 79.
    Stroock D., Varadhan, S. R. S.: Multidimensional Diffusion Processes. Berlin: Springer, 1979zbMATHGoogle Scholar
  80. 80.
    Tailleur J., Tanase-Nicola S., Kurchan J.: Kramers equation and supersymmetry. J. Stat. Phys. 122, 557–595 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  81. 81.
    Turitsyn K., Chertkov M., Chernyak V.Y., Puliafito A.: Statistics of entropy production in linearized stochastic system. Phys. Rev. Lett. 98, 180603/1–14 (2007)CrossRefADSGoogle Scholar
  82. 82.
    Young L.-S.: What are SRB measures, and which dynamical systems have them. J. Stat. Phys. 108, 733–754 (2002)zbMATHCrossRefGoogle Scholar
  83. 83.
    van Zon R., Cohen E.G.D.: Extension of the Fluctuation Theorem. Phys Rev. Lett. 91, 110601/1–4 (2003)Google Scholar
  84. 84.
    Wilkinson M., Mehlig B.: The path-coalescence transition and its applications. Phys. Rev. E 68, 040101/1–4 (2003)CrossRefADSGoogle Scholar
  85. 85.
    Witten E.: Supersymmetry and Morse theory. J. Diff. Geom. 17, 661–692 (1982)zbMATHMathSciNetGoogle Scholar
  86. 86.
    Williams S.R., Searles D.J., Evans D.J.: Numerical study of the steady state fluctuation relations far from equilibrium. J. Chem. Phys. 124, 194102/1–9 (2006)CrossRefADSGoogle Scholar
  87. 87.
    Zwanzig R.: Nonequilibrium Statistical Mechanics. Oxford: Oxford University Press, 2002Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Université de Lyon, C.N.R.S., ENS-Lyon, Laboratoire de PhysiqueLyonFrance

Personalised recommendations