# Ergodic Theory of Parabolic Horseshoes

- 83 Downloads
- 6 Citations

## Abstract

In this paper we develop the ergodic theory for a horseshoe map *f* which is uniformly hyperbolic, except at one parabolic fixed point *ω* and possibly also on *W* ^{ s }(*ω*). We call *f* a parabolic horseshoe map. In order to analyze dynamical and geometric properties of such horseshoes, by making use of induced maps, we establish, in the context of *σ*-finite measures, an appropriate version of the variational principle for continuous potentials with mild distortion defined on subshifts of finite type. Staying in this setting, we propose a concept of *σ*-finite equilibrium states (each classical probability equilibrium state is a *σ*-finite equilibrium state). We then study the unstable pressure function \({t \mapsto P(-t \log |Df| E^u|)}\), the corresponding finite and *σ*-finite equilibrium states and their associated conditional measures. The main idea is to relate the pressure function to the pressure of an embedded parabolic iterated function system and to apply the developed theory of the symbolic *σ*-finite thermodynamic formalism. We prove, in particular, an appropriate form of the Bowen-Ruelle-Manning-McCluskey formula, the existence of exactly two *σ*-finite ergodic conservative equilibrium states for the potential –*t* ^{ u }log |*Df*|*E* ^{ u }| (where *t* ^{ u } denotes the unstable dimension), one of which is the Dirac *δ*-measure supported at the parabolic fixed point and the other being non-atomic. We also show that the conditional measures of this non-atomic equilibrium state on unstable manifolds, are equivalent to (finite and positive) packing measures, whereas the Hausdorff measures vanish. As an application of our results we obtain a classification for the existence of a generalized physical measure, as well as a criteria implying the non-existence of an ergodic measure of maximal dimension.

## Keywords

Ergodic Theory Unstable Manifold Hausdorff Dimension Maximal Dimension Iterate Function System## Preview

Unable to display preview. Download preview PDF.

## References

- A.Aaronson, J.:
*An introduction to infinite ergodic theory*. Mathematical Surveys and Monographs,**50**. Providence, RI: Amer. Math. Soc., 1997Google Scholar - BW1.Barreira L, Wolf C.: Measures of maximal dimension for hyperbolic diffeomorphisms. Commun. Math. Phys.
**239**, 93–113 (2003)zbMATHCrossRefADSMathSciNetGoogle Scholar - BW2.Barreira L., Wolf C.: Pointwise dimension and ergodic decompositions. Erg. Theory Dyn. Syst.
**26**(3), 653–671 (2006)zbMATHCrossRefMathSciNetGoogle Scholar - DU.Denker M., Urbański M.: On the existence of conformal measures. Trans. A.M.S.
**328**, 563–587 (1991)zbMATHCrossRefGoogle Scholar - DV.Diaz L., Viana M.: Discontinuity of Hausdorff dimension and limit capacity on arcs of diffeomorphisms. Erg. Theory Dyn. Syst.
**9**(3), 403–425 (1989)zbMATHMathSciNetGoogle Scholar - DGS.Denker, M., Grillenberger, C., Sigmund, K.:
*Ergodic theory on compact spaces*, Lecture Notes in Math.**527**. Berlin: Springer-Verlag, 1976Google Scholar - F.Falconer K.: Fractal Geometry: Mathematical Foundations and applications. Wiley, New York (2003)zbMATHGoogle Scholar
- HMU.Hanus P., Mauldin D., Urbański M.: Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems. Acta Math. Hungarica
**96**, 27–98 (2002)zbMATHCrossRefGoogle Scholar - J.Jenkinson O.: Rotation, Entropy, and Equilibrium States. Trans. Amer. Math. Soc.
**353**, 3713–3739 (2001)zbMATHCrossRefMathSciNetGoogle Scholar - KFS.Kornfeld P., Fomin S.V., Sinai Y.G.: Ergodic Theory. Springer, Berlin-Heidelberg-New York (1982)Google Scholar
- K.Krengel U.: Entropy of conservative transformations. Z. Wahr. verw. Geb.
**7**, 161–181 (1967)zbMATHCrossRefMathSciNetGoogle Scholar - Ma.Manning A.: A relation between Lyapunov exponents, Hausdorff dimension and entropy. Ergodic Theory Dy. Syst.
**1**(4), 451–459 (1982)MathSciNetGoogle Scholar - MM.Manning A., McCluskey H.: Hausdorff dimension for Horseshoes. Erg. Theory Dyn. Syst.
**3**, 251–260 (1983)MathSciNetGoogle Scholar - MU1.Mauldin D., Urbański M.: Parabolic iterated function systems. Erg. Th. & Dyna. Syst.
**20**, 1423–1447 (2000)zbMATHCrossRefGoogle Scholar - MU2.Mauldin D., Urbański M.: Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets. Cambridge Univ. Press, Cambridge (2003)zbMATHGoogle Scholar
- Me.Mendoza L.: The entropy of
*C*^{2}surface diffeomorphisms in terms of Hausdorff dimension and a Lyapunov exponent. Erg. Theory Dyn. Syst.**5**(2), 273–283 (1985)zbMATHMathSciNetCrossRefGoogle Scholar - PU.Przytycki, F., Urbański, M.:
*Fractals in the Plane - Ergodic Theory Methods*. To appear Cambridge Univ. Press, available on Urbański’s webpage, http://www.math.unt.edu/~urbanski/ - Ra.Rams M.: Measures of maximal dimension for linear horseshoes. Real Analysis Exchange
**31**, 55–62 (2006)zbMATHMathSciNetGoogle Scholar - Ru.Ruelle D.: Thermodynamic formalism. Addison-Wesley, Reading, MA (1978)zbMATHGoogle Scholar
- U1.Urbański, M.:
*Parabolic Cantor sets*. Preprint 1995, available on Urbański’s webpage, http://www.math.unt.edu/~urbanski/ - U2.Urbański M.: Parabolic Cantor sets. Fund. Math.
**151**, 241–277 (1996)MathSciNetzbMATHGoogle Scholar - U3.Urbański M.: Geometry and ergodic theory of conformal nonrecurrent dynamics. Erg. Th. Dyn. Syst.
**17**, 1449–1476 (1997)CrossRefzbMATHGoogle Scholar - U4.Urbański M.: Hausdorff measures versus equilibrium states of conformal infinite iterated function systems. Periodica Math. Hung.
**37**, 153–205 (1998)CrossRefzbMATHGoogle Scholar - Wa.Walters, P.:
*An introduction to ergodic theory*. Graduate Texts in Mathematics**79**, Berlin-Heidelberg-New York: Springer, 1981Google Scholar - Wo.Wolf C.: Generalized physical and SRB measures for hyperbolic diffeomorphisms. J. Stat. Phys.
**122**(6), 1111–1138 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar - Y.Young L.-S.: Dimension, entropy and Lyapunov exponents. Erg. Theory Dyn. Syst.
**2**, 109–124 (1982)zbMATHCrossRefGoogle Scholar