Communications in Mathematical Physics

, Volume 281, Issue 3, pp 621–653 | Cite as

Enumerative Geometry of Calabi-Yau 4-Folds

Article

Abstract

Gromov-Witten theory is used to define an enumerative geometry of curves in Calabi-Yau 4-folds. The main technique is to find exact solutions to moving multiple cover integrals. The resulting invariants are analogous to the BPS counts of Gopakumar and Vafa for Calabi-Yau 3-folds. We conjecture the 4-fold invariants to be integers and expect a sheaf theoretic explanation.

Several local Calabi-Yau 4-folds are solved exactly. Compact cases, including the sextic Calabi-Yau in \({{\mathbb{P}^5}}\), are also studied. A complete solution of the Gromov-Witten theory of the sextic is conjecturally obtained by the holomorphic anomaly equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aspinwall P., Morrison D.: Topological field theory and rational curves. Comm. Math. Phys. 151, 245–262 (1993)CrossRefADSMathSciNetMATHGoogle Scholar
  2. 2.
    Bershadski M., Cecotti S., Ooguri H., Vafa C.: Holomorphic anomalies in topological field theories. Nucl. Phys. B 405, 279 (1993)CrossRefADSGoogle Scholar
  3. 3.
    Bershadsky M., Cecotti S., Ooguri H., Vafa C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311 (1994)CrossRefADSMathSciNetMATHGoogle Scholar
  4. 4.
    Bismut, J.-M., Gillet, H., Soulé, C.: Analytic Torsion and Holomorphic Determinant Bundles I,II and III. Commun. Math. Phys. 115, 49 (1988), Commun. Math. Phys. 115, 79 (1988) and Commun. Math. Phys. 165, 301 (1988)Google Scholar
  5. 5.
    Bryan J., Leung N.C.: The enumerative geometry of K3 surfaces and modular forms. J. AMS 13, 371–410 (2000)MathSciNetMATHGoogle Scholar
  6. 6.
    Cecotti S., Fendley P., Intriligator K.A., Vafa C.: A New supersymmetric index. Nucl. Phys. B 386, 405 (1992)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Cecotti S., Vafa C.: Ising Model and N = 2 Supersymmetric Theories. Commun. Math. Phys. 157, 139 (1993)CrossRefADSMathSciNetMATHGoogle Scholar
  8. 8.
    Ellingsrud G., Stromme S.: Bott’s formula and enumerative geometry. JAMS 9, 175–193 (1996)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Faber C., Pandharipande R.: Hodge integrals and Gromov-Witten theory. Invent. Math. 139, 173–199 (2000)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Fulton W.: Intersection theory. Springer-Verlag, Berlin (1998)MATHGoogle Scholar
  11. 11.
    Fulton, W., Pandharipande, R.: Notes on stable maps and quantum cohomology. In: Algebraic Geometry (Santa Cruz 1995) Kollár, J., Lazarsfeld, R., Morrison, D. eds., Volume 62, Part 2, Providence, RI: Amer. Math. Soc., 1997, pp. 45–96Google Scholar
  12. 12.
    Gathmann, A.: Gromov-Witten invariants of hypersurfaces. Habilitation thesis, Univ. of Kaiserslautern, 2003Google Scholar
  13. 13.
    Gates S.J.J., Gukov S., Witten E.: Two two-dimensional supergravity theories from Calabi-Yau four-folds. Nucl. Phys. B 584, 109 (2000)CrossRefADSMathSciNetMATHGoogle Scholar
  14. 14.
    Gopakumar, R., Vafa, C.: M-theory and topological strings I. http://arixiv.org/list/hepth/9809187, 1998
  15. 15.
    Gopakumar, R., Vafa, C.: M-theory and topological strings II. http://arixiv.org/list/hepth/9812127, 1998
  16. 16.
    Göttsche L., Pandharipande R.: The quantum cohomology of blow-ups of \({{{\mathbb{P}}^2}}\) . J. Diff. Geom. 48, 61–90 (1998)MATHGoogle Scholar
  17. 17.
    Graber T., Pandharipande R.: Localization of virtual classes. Invent. Math. 135, 487–518 (1999)CrossRefADSMathSciNetMATHGoogle Scholar
  18. 18.
    Gukov, S., Vafa, C., Witten, E.: CFT’s from Calabi-Yau four-folds, Nucl. Phys. B 584, 69 (2000), Erratum-ibid. B 608, 477 (2001)Google Scholar
  19. 19.
    Hosono S., Klemm A., Theisen S., Yau S.T.: Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces. Nucl. Phys. B 433, 501 (1995)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Katz, A., Klemm, A., Vafa, C.: M-theory, topological strings, and spinning blackholes. Adv. Theor.Math. Phys. 3, 1445–1537 (1999)MathSciNetMATHGoogle Scholar
  21. 21.
    Klemm A., Lian B., Roan S.S., Yau S.T.: Calabi-Yau fourfolds for M- and F-theory compactifications Nucl. Phys. B 518, 515–574 (1998)MathSciNetMATHGoogle Scholar
  22. 22.
    Klemm, A., Mariño, M.: Counting BPS states on the Enriques Calabi-Yau. http://arixiv.org/list/hepth/0512227, 2005
  23. 23.
    Lee, J.L., Parker, T.: A structure theorem for the Gromov-Witten invariants of Kähler surfaces. http://arixiv.org/list/math.SG/0610570, 2006
  24. 24.
    Li, J., Zinger, A.: On the genus 1 Gromov-Witten invariants of complete intersection threefolds. http://arixiv.org/list/math.AG/0507104, 2005
  25. 25.
    Maulik D., Nekrasov N., Okounkov A., Pandharipande R.: Gromov-Witten theory and Donaldson-Thomas theory I. Comp. Math. 142, 1263–1285 (2006)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Maulik D., Nekrasov N., Okounkov A., Pandharipande R.: Gromov-Witten theory and Donaldson-Thomas theory II. Comp. Math. 142, 1286–1304 (2006)CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Maulik D., Pandharipande R.: A topological view of Gromov-Witten theory. Topology 45, 887–918 (2006)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Maulik, D., Pandharipande, R.: New calculations in Gromov-Witten theory. http://arixiv.org/list/math.AG/0601395, 2006
  29. 29.
    Mayr P.: Mirror symmetry, N = 1 superpotentials and tensionless strings on Calabi-Yau four-folds. Nucl. Phys. B 494, 489 (1997)CrossRefADSMathSciNetMATHGoogle Scholar
  30. 30.
    Mayr, P.: Summing up open string instantons and N=1 string amplitudes. http://arixiv.org/list/hepth/0203237, 2002
  31. 31.
    Pandharipande, R.: The canonical class of \({{\overline{M}_{0,n}({\mathbb{P}}^r,d)}}\) and enumerative geometry. IMRN 173–186 (1997)Google Scholar
  32. 32.
    Pandharipande R.: Hodge integrals and degenerate contributions. Comm. Math. Phys. 208, 489–506 (1999)CrossRefADSMathSciNetMATHGoogle Scholar
  33. 33.
    Pandharipande, R.: Three questions in Gromov-Witten theory, Proceedings of the ICM (Beijing 2002), Vol II., Beijing: Higher Ed. Press, 2002, pp. 503–512Google Scholar
  34. 34.
    Pestun V., Witten E.: The Hitchin functionals and the topological B-model at one loop. Lett. Math. Phys. 74, 21–51 (2005)CrossRefADSMathSciNetMATHGoogle Scholar
  35. 35.
    Ray D.B., Singer I.M.: Analytic torsion for complex manifolds, Ann. of. Math. 98, 154 (1973)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Taubes C.: SW ⇒ Gr: from the Seiberg-Witten equations to pseudo-holomorphic curves J. AMS 9, 845–918 (1996)MathSciNetMATHGoogle Scholar
  37. 37.
    Taubes C.: Counting pseudo-holomorphic submanifolds in dimension 4. J. Diff. Geom. 44, 818–893 (1996)MathSciNetMATHGoogle Scholar
  38. 38.
    Taubes C.: Gr ⇒ SW: from pseudo-holomorphic curves to Seiberg-Witten solutions J. Diff. Geom. 51, 203–334 (1999)MathSciNetMATHGoogle Scholar
  39. 39.
    Taubes C.: GR = SW: counting curves and connections. J. Diff. Geom. 52, 453–609 (1999)MathSciNetMATHGoogle Scholar
  40. 40.
    Thomas R.: A holomorphic Casson invariant for Calabi-Yau 3-folds and bundles on K3 fibrations. JDG 54, 367–438 (2000)MATHGoogle Scholar
  41. 41.
    Vafa C., Witten E.: A one loop test of string duality. Nucl. Phys. B 447, 261 (1995)CrossRefADSMathSciNetMATHGoogle Scholar
  42. 42.
    Witten, E.: Mirror manifolds and topological field theory. http://arixiv.org/list/hepth/9112056, 1991

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of PhysicsUniv. of WisconsinMadisonUSA
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations