Communications in Mathematical Physics

, Volume 281, Issue 1, pp 129–177 | Cite as

A New Approach to the Modeling of Local Defects in Crystals: The Reduced Hartree-Fock Case

  • Éric Cancès
  • Amélie Deleurence
  • Mathieu Lewin


This article is concerned with the derivation and the mathematical study of a new mean-field model for the description of interacting electrons in crystals with local defects. We work with a reduced Hartree-Fock model, obtained from the usual Hartree-Fock model by neglecting the exchange term.

First, we recall the definition of the self-consistent Fermi sea of the perfect crystal, which is obtained as a minimizer of some periodic problem, as was shown by Catto, Le Bris and Lions. We also prove some of its properties which were not mentioned before.

Then, we define and study in detail a nonlinear model for the electrons of the crystal in the presence of a defect. We use formal analogies between the Fermi sea of a perturbed crystal and the Dirac sea in Quantum Electrodynamics in the presence of an external electrostatic field. The latter was recently studied by Hainzl, Lewin, Séré and Solovej, based on ideas from Chaix and Iracane. This enables us to define the ground state of the self-consistent Fermi sea in the presence of a defect.

We end the paper by proving that our model is in fact the thermodynamic limit of the so-called supercell model, widely used in numerical simulations.


Thermodynamic Limit Local Defect Lewin Quantum Electrodynamic Unique Minimizer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bach, V., Barbaroux, J.-M., Helffer, B., Siedentop, H.: On the Stability of the Relativistic Electron-Positron Field. Commun. Math. Phys. 201, 445–460 (1999)zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Bhatia, R.: Matrix analysis. Graduate Texts in Mathematics, 169. New York: Springer-Verlag, 1997Google Scholar
  3. 3.
    Cancès, É., Deleurence, A., Lewin, M.: Non-perturbative embedding of local defects in crystalline materials., 2007
  4. 4.
    Catto, I., Le Bris, C., Lions, P.-L.: Sur la limite thermodynamique pour des modèles de type Hartree et Hartree-Fock. C.R. Acad. Sci. Paris, Série I 327, 259–266 (1998)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Catto, I., Le Bris, C., Lions, P.-L.: On the thermodynamic limit for Hartree-Fock type problems. Ann. I. H. Poincaré 18, 687–760 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chaix, P., Iracane, D.: From quantum electrodynamics to mean field theory: I. The Bogoliubov-Dirac-Fock formalism. J. Phys. B. 22, 3791–3814 (1989)Google Scholar
  7. 7.
    Chaix, P., Iracane, D., Lions, P.L.: From quantum electrodynamics to mean field theory: II. Variational stability of the vacuum of quantum electrodynamics in the mean-field approximation. J. Phys. B. 22, 3815–3828 (1989)CrossRefADSGoogle Scholar
  8. 8.
    Dovesi, R., Orlando, R., Roetti, C., Pisani, C., Saunders, V.R.: periodic Hartree-Fock method and its implementation in the Crystal code. Phys. Stat. Sol. (b) 217, 63–88 (2000)CrossRefGoogle Scholar
  9. 9.
    Fefferman, C.: The Thermodynamic Limit for a Crystal. Commun. Math. Phys. 98, 289–311 (1985)zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Hainzl, Ch., Lewin, M., Séré, E.: Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation. Commun. Math. Phys. 257, 515–562 (2005)zbMATHCrossRefADSGoogle Scholar
  11. 11.
    Hainzl, Ch., Lewin, M., Séré, E.: Self-consistent solution for the polarized vacuum in a no-photon QED model. J. Phys. A: Math & Gen. 38(20), 4483–4499 (2005)zbMATHCrossRefADSGoogle Scholar
  12. 12.
    Hainzl, Ch., Lewin, M., Séré, E.: Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics. Arch. Rat. Mech. Anal. (to appear)Google Scholar
  13. 13.
    Hainzl, Ch., Lewin, M., Solovej, J.P.: The mean-field approximation in quantum electrodynamics. The no-photon case. Comm. Pure Applied Math. 60(4), 546–596 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hainzl, C., Lewin, M., Séré, É., Solovej, J.P.: A Minimization Method for Relativistic Electrons in a Mean-Field Approximation of Quantum Electrodynamics. Phys. Rev. A 76, 052104 (2007)CrossRefADSGoogle Scholar
  15. 15.
    Hasler, D., Solovej, J.P.: The Independence on Boundary Conditions for the Thermodynamic Limit of Charged Systems. Commun. Math. Phys. 261(3), 549–568 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Hunziker, W.: On the Spectra of Schrödinger Multiparticle Hamiltonians. Helv. Phys. Acta 39, 451–462 (1996)MathSciNetGoogle Scholar
  17. 17.
    Kittel, Ch.: Quantum Theory of Solids. Second Edition. Wiley, New York (1987)Google Scholar
  18. 18.
    Lieb, E.H.: The Stability of Matter. Rev. Mod. Phys. 48, 553–569 (1976)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Lieb, E.H., Lebowitz, J.L.: The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei. Adv. Math. 9, 316–398 (1972)MathSciNetGoogle Scholar
  20. 20.
    Lieb, E.H., Loss, M.: Analysis, Second Edition. Graduate Studies in Mathematics, Vol. 14. Providence, RI: Amer. Math. Soc., 2001Google Scholar
  21. 21.
    Lieb, E.H., Simon, B.: The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Lieb, E.H., Solovej, J.P., Yngvason, J.: Asymptotics of heavy atoms in high magnetic fields. I. Lowest Landau band regions. Comm. Pure Appl. Math. 47(4), 513–591 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lions, P.-L.: The concentration-compactness method in the Calculus of Variations. The locally compact case. Part. I: Anal. non linéaire, Ann. IHP 1 109–145, (1984); Part. II: Anal. non linéaire, Ann. IHP 1 223–283, (1984)Google Scholar
  25. 25.
    Pisani, C.: Quantum-mechanical treatment of the energetics of local defects in crystals: a few answers and many open questions. Phase Transitions 52, 123–136 (1994)CrossRefGoogle Scholar
  26. 26.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol I, Functional Analysis, Second Ed. New York: Academic Press, 1980Google Scholar
  27. 27.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol IV, Analysis of Operators. New York: Academic Press, 1978Google Scholar
  28. 28.
    Ruelle, D.: Statistical Mechanics. Rigorous results. Imperial College Press and World Scientific Publishing, Singapore (1999)Google Scholar
  29. 29.
    Seiler, E., Simon, B.: Bounds in the Yukawa2 Quantum Field Theory: Upper Bound on the Pressure, Hamiltonian Bound and Linear Lower Bound. Commun. Math. Phys. 45, 99–114 (1975)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Simon, B.: Trace Ideals and their Applications. Vol 35 of London Mathematical Society Lecture Notes Series. Cambridge: Cambridge University Press, 1979Google Scholar
  31. 31.
    Solovej, J.P.: Proof of the ionization conjecture in a reduced Hartree-Fock model. Invent. Math. 104(2), 291–311 (1991)zbMATHCrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Soussi, S.: Convergence of the supercell method for defect modes calculations in photonic crystals. SIAM J. Numer. Anal. 43(3), 1175–1201 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Stoneham, A.M.: Theory of Defects in Solids - Electronic Structure of Defects in Insulators and Semiconductors. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar
  34. 34.
    Thomas, L.E.: Time-Dependent Approach to Scattering from Impurities in a Crystal. Commun. Math. Phys. 33, 335–343 (1973)CrossRefADSGoogle Scholar
  35. 35.
    Van Winter, C.: Theory of Finite Systems of Particles. I. The Green function. Mat.-Fys. Skr. Danske Vid. Selsk. 2(8), 1–60 (1964)MathSciNetGoogle Scholar
  36. 36.
    Zhislin, G.M.: A study of the spectrum of the Schrödinger operator for a system of several particles. (Russian) Trudy Moskov. Mat. Obšč. 9, 81–120 (1960)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Éric Cancès
    • 1
  • Amélie Deleurence
    • 1
  • Mathieu Lewin
    • 2
  1. 1.CERMICSEcole Nationale des Ponts et Chaussées (Paris Tech) & INRIA (Micmac Project)Champs-sur-MarneFrance
  2. 2.CNRS & Laboratoire de Mathématiques UMR 8088Université de Cergy-PontoiseCergy-Pontoise CedexFrance

Personalised recommendations