Advertisement

Communications in Mathematical Physics

, Volume 280, Issue 2, pp 499–516 | Cite as

The Fractal Dimension of the Spectrum of the Fibonacci Hamiltonian

  • D. Damanik
  • M. Embree
  • A. Gorodetski
  • S. Tcheremchantsev
Article

Abstract

We study the spectrum of the Fibonacci Hamiltonian and prove upper and lower bounds for its fractal dimension in the large coupling regime. These bounds show that as \(\lambda \to \infty, {\rm dim} (\sigma(H_\lambda)) \cdot {\rm log} \lambda\)converges to an explicit constant, \({\rm log}(1+\sqrt{2})\approx 0.88137\) . We also discuss consequences of these results for the rate of propagation of a wavepacket that evolves according to Schrödinger dynamics generated by the Fibonacci Hamiltonian.

Keywords

Fractal Dimension Hausdorff Dimension Transfer Matrice Singular Continuous Spectrum Periodic Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz M. and Stegun I. (1965). Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York Google Scholar
  2. 2.
    Barbaroux J.-M., Germinet F. and Tcheremchantsev S. (2001). Fractal dimensions and the phenomenon of intermittency in quantum dynamics. Duke Math. J. 110: 161–193 CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Barbaroux J.-M., Germinet F. and Tcheremchantsev S. (2001). Generalized fractal dimensions: equivalences and basic properties. J. Math. Pures Appl. 80: 977–1012 CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Bellissard J., Iochum B., Scoppola E. and Testard D. (1989). Spectral properties of one-dimensional quasicrystals. Commun. Math. Phys. 125: 527–543 CrossRefADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Casdagli M. (1986). Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation. Commun. Math. Phys. 107: 295–318 CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Damanik, D.: Strictly ergodic subshifts and nassociated operators. In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, Proceedings of Symposia in Pure Mathematics 74, Providence, RI: Amer. Math. Soc. 2006, pp. 505–538Google Scholar
  7. 7.
    Damanik D. and Lenz D. (1999). Uniform spectral properties of one-dimensional quasicrystals. I. Absence of eigenvalues. Commun. Math. Phys. 207: 687–696 CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    Damanik D. and Lenz D. (1999). Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent. Lett. Math. Phys. 50: 245–257 CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Damanik D. and Tcheremchantsev S. (2003). Power-law bounds on transfer matrices and quantum dynamics in one dimension. Commun. Math. Phys. 236: 513–534 CrossRefADSMathSciNetzbMATHGoogle Scholar
  10. 10.
    Damanik D. and Tcheremchantsev S. (2007). Upper bounds in quantum dynamics. J. Amer. Math. Soc. 20: 799–827 CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Germinet F., Kiselev A. and Tcheremchantsev S. (2004). Transfer matrices and transport for Schrödinger operators. Ann. Inst. Fourier (Grenoble) 54: 787–830 MathSciNetzbMATHGoogle Scholar
  12. 12.
    Hasselblatt, B.: Hyperbolic dynamical systems. In: Handbook of Dynamical SystemsVol. 1A. Amsterdam: North-Holland, 2002, pp. 239–319Google Scholar
  13. 13.
    Hof A., Knill O. and Simon B. (1995). Singular continuous spectrum for palindromic Schrödinger operators. Commun. Math. Phys. 174: 149–159 CrossRefADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Iochum B. and Testard D. (1991). Power law growth for the resistance in the Fibonacci model. J. Stat. Phys. 65: 715–723 CrossRefADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Kadanoff, L.: Analysis of cycles for a volume preserving map. UnpublishedGoogle Scholar
  16. 16.
    Kaminaga M. (1996). Absence of point spectrum for a class of discrete Schrödinger operators with quasiperiodic potential. Forum Math. 8: 63–69 MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Killip R., Kiselev A. and Last Y. (2003). Dynamical upper bounds on wavepacket spreading. Amer. J. Math. 125: 1165–1198 CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Kohmoto M., Kadanoff L.P. and Tang C. (1983). Localization problem in one dimension: Mapping and escape. Phys. Rev. Lett. 50: 1870–1872 CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Kotani S. (1989). Jacobi matrices with random potentials taking finitely many values. Rev. Math. Phys. 1: 129–133 CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Mañé R. (1990). The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces. Bol. Soc. Brasil. Mat. (N.S.) 20: 1–24 CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Mattila P. (1995). Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  22. 22.
    McCluskey, H., Manning, A.: Hausdorff dimension for horseshoes. Ergodic Theory Dynam. Systems 3, 251–261 (1983); Erratum. Ergodic Theory Dynam. Systems 5, 319 (1985)Google Scholar
  23. 23.
    Ostlund S., Pandit R., Rand D., Schellnhuber H.J. and Siggia E.D. (1983). One-dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett. 50: 1873–1877 CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Palis J. and Takens F. (1993). Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and Infinitely Many Attractors. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  25. 25.
    Palis, J., Viana, M.: On the continuity of the Hausdorff dimension and limit capacity for horseshoes, In: Dynamical Systems, Lecture Notes in Mathematics 1331, Berlin: Springer, 1988, pp. 150–160Google Scholar
  26. 26.
    Pesin Ya. (1997). Dimension Theory in Dynamical Systems. University of Chicago Press, Chicago Google Scholar
  27. 27.
    Raymond, L.: A constructive gap labelling for the discrete Schrödinger operator on a quasiperiodic chain. Preprint (1997)Google Scholar
  28. 28.
    Sütő A. (1987). The spectrum of a quasiperiodic Schrödinger operator. Commun. Math. Phys. 111: 409–415 CrossRefADSGoogle Scholar
  29. 29.
    Sütő A. (1989). Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian. J. Stat. Phys. 56: 525–531 CrossRefADSGoogle Scholar
  30. 30.
    Takens, F.: Limit capacity and Hausdorff dimension of dynamically defined Cantor sets. In: Dynamical Systems, Lecture Notes in Mathematics 1331, Springer, Berlin, 1988, pp. 196–212Google Scholar
  31. 31.
    Tcheremchantsev S. (2003). Mixed lower bounds for quantum transport. J. Funct. Anal. 197: 247–282 CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Tcheremchantsev, S.: In preparationGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • D. Damanik
    • 1
  • M. Embree
    • 2
  • A. Gorodetski
    • 3
  • S. Tcheremchantsev
    • 4
  1. 1.Department of MathematicsRice UniversityHoustonUSA
  2. 2.Department of Computational and Applied MathematicsRice UniversityHoustonUSA
  3. 3.Mathematics 253-37California Institute of TechnologyPasadenaUSA
  4. 4.Université d’Orléans, Laboratoire MAPMO, CNRS-UMR 6628Orléans CedexFrance

Personalised recommendations