Advertisement

Communications in Mathematical Physics

, Volume 281, Issue 1, pp 251–261 | Cite as

Nonlinear Dirac Operator and Quaternionic Analysis

  • Andriy Haydys
Article

Abstract

Properties of the Cauchy–Riemann–Fueter equation for maps between quaternionic manifolds are studied. Spaces of solutions in case of maps from a K3–surface to the cotangent bundle of a complex projective space are computed. A relationship between harmonic spinors of a generalized nonlinear Dirac operator and solutions of the Cauchy–Riemann–Fueter equation are established.

Keywords

Manifold Vector Bundle Dirac Operator Cotangent Bundle Complex Projective Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anselmi D. and Fré P. (1994). Topological σ-models in four dimensions and triholomorphic maps. Nucl. Phys. B 416(1): 255–300 zbMATHCrossRefADSGoogle Scholar
  2. 2.
    Atiyah, M., Hitchin, N.: The geometry and dynamics of magnetic monopoles. M. B. Porter Lectures. Princeton, NJ: Princeton University Press, 1988Google Scholar
  3. 3.
    Bagger J. and Witten E. (1983). Matter couplings in N = 2 supergravity. Nucl. Phys. B 222(1): 1–10 CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces, Volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Berlin: Springer-Verlag, second edition, 2004Google Scholar
  5. 5.
    Belcastro S.-M. (2002). Picard lattices of families of K3 surfaces. Comm. Alg. 30(1): 61–82 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Boyer C.P., Galicki K. and Mann B.M. (1993). Quaternionic reduction and Einstein manifolds. Comm. Anal. Geom. 1(2): 229–279 zbMATHMathSciNetGoogle Scholar
  7. 7.
    Chen J. (1999). Complex anti-self-dual connections on a product of Calabi-Yau surfaces and triholomorphic curves. Commun. Math. Phys. 201(1): 217–247 zbMATHCrossRefADSGoogle Scholar
  8. 8.
    Chen J. and Li J. (2000). Quaternionic maps between hyperkähler manifolds. J. Differ. Geom. 55(2): 355–384 zbMATHGoogle Scholar
  9. 9.
    Donaldson, S.K., Thomas, R.P.: Gauge theory in higher dimensions. In: The geometric universe (Oxford, 1996), Oxford: Oxford Univ. Press 1998, pp. 31–47Google Scholar
  10. 10.
    Feix B. (2001). Hyperkahler metrics on cotangent bundles. J. Reine Angew. Math. 532: 33–46 zbMATHMathSciNetGoogle Scholar
  11. 11.
    Figueroa-O’Farrill J.M., Köhl C. and Spence B. (1998). Supersymmetric Yang-Mills, octonionic instantons and triholomorphic curves. Nucl. Phys. B 521(3): 419–443 zbMATHCrossRefADSGoogle Scholar
  12. 12.
    Friedman, R.: Algebraic surfaces and holomorphic vector bundles. Universitext. New York: Springer-Verlag, 1998Google Scholar
  13. 13.
    Fueter R. (1934). Die Funktionentheorie der Differentialgleichungen Δu = 0 und ΔΔu = 0 mit vier reellen Variablen. Comment. Math. Helv. 7(1): 307–330 CrossRefMathSciNetGoogle Scholar
  14. 14.
    Griffiths P. and Harris J. (1978). Principles of algebraic geometry. Wiley-Interscience [John Wiley & Sons], New York zbMATHGoogle Scholar
  15. 15.
    Hitchin N.J. (1987). The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc., III. Ser. 55: 59–126 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Joyce D. (1998). Hypercomplex algebraic geometry. Quart. J. Math. Oxford Ser. (2) 49(194): 129–162 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kaledin, D.: Hyperkaehler structures on total spaces of holomorphic cotangent bundles. http://arxiv.org/list/alg-geom/9710026 , 1997Google Scholar
  18. 18.
    Maciocia A. (1991). Metrics on the moduli spaces of instantons over Euclidean 4-space. Commun. Math. Phys. 135(3): 467–482 zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Pidstrygach, V.Ya.: Hyper-Kähler manifolds and the Seiberg-Witten equations. Tr. Mat. Inst. Steklova, 246(Algebr. Geom. Metody, Svyazi i Prilozh.), 263–276, (2004)Google Scholar
  20. 20.
    Sudbery A. (1979). Quaternionic analysis. Math. Proc. Camb. Philos. Soc. 85: 199–225 zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Swann A. (1991). HyperKahler and quaternionic Kahler geometry. Math. Ann. 289(3): 421–450 zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Taubes, C.H.: Nonlinear generalizations of a 3-manifold’s Dirac operator. In: Trends in mathematical physics (Knoxville, TN, 1998), Volume 13 of AMS/IP Stud. Adv. Math., Providence, RI: Amer. Math. Soc. pp. 475–486 1999Google Scholar
  23. 23.
    Wang C. (2003). Energy quantization for triholomorphic maps. Calc. Var. Partial Differ. Eqs. 18(2): 145–158 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Fakultät für mathematikUniversität BielefeldBielefeldGermany

Personalised recommendations