Communications in Mathematical Physics

, Volume 279, Issue 2, pp 381–399 | Cite as

Invariants of Spin Networks Embedded in Three-Manifolds

Article

Abstract

We study the invariants of spin networks embedded in a three-dimensional manifold which are based on the path integral for SU(2) BF-Theory. These invariants appear naturally in Loop Quantum Gravity, and have been defined as spin-foam state sums. By using the Chain-Mail technique, we give a more general definition of these invariants, and show that the state-sum definition is a special case. This provides a rigorous proof that the state-sum invariants of spin networks are topological invariants. We derive various results about the BF-Theory spin network invariants, and we find a relation with the corresponding invariants defined from Chern-Simons Theory, i.e. the Witten-Reshetikhin-Turaev invariants. We also prove that the BF-Theory spin network invariants coincide with V. Turaev’s definition of invariants of coloured graphs embedded in 3-manifolds and thick surfaces, constructed by using shadow-world evaluations. Our framework therefore provides a unified view of these invariants.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B1.
    Barrett, J.W.: Geometrical measurements in three-dimensional quantum gravity. Proceedings of the Tenth Oporto Meeting on Geometry, Topology and Physics (2001). Internat. J. Modern Phys. A 18, October, suppl., 97–113 (2003)Google Scholar
  2. B2.
    Barrett J.W. (2005). Feynman loops and three-dimensional quantum gravity. Mod. Phys. Lett. A 20(17–18): 1271–1283 MATHCrossRefMathSciNetGoogle Scholar
  3. B3.
    Barrett J.W. (2006). Feynman diagrams coupled to three-dimensional quantum gravity. Classical Quantum Gravity 23(1): 137–141 MATHCrossRefADSMathSciNetGoogle Scholar
  4. Ba.
    Baez J. (2000). An Introduction to Spin Foam Models of Quantum Gravity and BF Theory. Lect. Notes Phys. 543: 25–94 ADSMathSciNetCrossRefGoogle Scholar
  5. BD.
    Beliakova A. and Durhuus B. (1995). Topological quantum field theory and invariants of graphs for quantum groups. Commun. Math. Phys. 167(2): 395–429 MATHCrossRefADSMathSciNetGoogle Scholar
  6. BGM.
    Barrett J.W., Garcia-Islas J.M. and Faria Martins J. (2007). Observables in the Turaev-Viro and Crane-Yetter models, math.QA/0411281. J. Math. Phys. 48(9): 093508 CrossRefADSMathSciNetGoogle Scholar
  7. BP.
    Benedetti R. and Petronio C. (1996). On Roberts’ proof of the Turaev-Walker theorem. J. Knot Theory Ramifications 5(4): 427–439 MATHCrossRefMathSciNetGoogle Scholar
  8. FK.
    Freidel L. and Krasnov K. (1999). Spin foam models and the classical action principle. Adv. Theor. Math. Phys. 2: 1183–1247 MathSciNetGoogle Scholar
  9. FL.
    Freidel, L., Louapre, D.: Ponzano-Regge model revisited II: Equivalence with Chern-Simons. http://arxiv.org/list/gr-qc/0410141
  10. FS.
    Freidel L. and Smolin L. (2004). The linearization of the Kodama state. Class. Quant. Grav. 21: 3831–3844 MATHCrossRefADSMathSciNetGoogle Scholar
  11. GI.
    García-Islas J.M. (2004). Observables in three-dimensional quantum gravity and topological invariants. Classical Quantum Gravity 21(16): 3933–3951 MATHCrossRefADSMathSciNetGoogle Scholar
  12. GS.
    Gompf, R.E., Stipsicz, A.I.: 4-manifolds and Kirby calculus. Graduate Studies in Mathematics, 20. Providence, RI: Amer. Math. Soc. 1999Google Scholar
  13. K.
    Kirby, R.C.: The topology of 4-manifolds. Lecture Notes in Mathematics 1374. Berlin: Springer-Verlag, 1989Google Scholar
  14. KL.
    Kauffman, L.H., Lins, S.L.: Temperley-Lieb recoupling theory and invariants of 3-manifolds. Annals of Mathematics Studies 134. Princeton, NJ: Princeton University Press, 1994Google Scholar
  15. KS.
    Karowski M and Schrader R. (1993). A combinatorial approach to topological quantum field theories and invariants of graphs. Commun. Math. Phys. 151(2): 355–402 MATHCrossRefADSMathSciNetGoogle Scholar
  16. KMS.
    Karowski M., Müller W. and Schrader R. (1992). State sum invariants of compact 3-manifolds with boundary and 6j-symbols. J. Phys. A 25(18): 4847–4860 MATHCrossRefADSMathSciNetGoogle Scholar
  17. Ko1.
    Kodama H. (1990). Holomorphic wave function of the Universe. Phys. Rev. D 42: 2548–2565 CrossRefADSMathSciNetGoogle Scholar
  18. Ko2.
    Kodama H. (1992). Quantum Gravity in the complex canonical formulation. Int. J. Mod. Phys. D 1: 439–524 MATHCrossRefADSMathSciNetGoogle Scholar
  19. L.
    Lickorish W.B.R. (1993). The skein method for three-manifold invariants. J. Knot Theory Ramifications 2(2): 171–194 MATHCrossRefMathSciNetGoogle Scholar
  20. MS.
    Major S. and Smolin L. (1996). Quantum deformation of quantum gravity. Nucl. Phys. B 473: 267–290 MATHCrossRefADSMathSciNetGoogle Scholar
  21. M1.
    Miković A. (2003). Quantum gravity vacuum and invariants of embedded spin networks. Class. Quant. Grav. 20(15): 3483–3492 CrossRefADSMATHGoogle Scholar
  22. M2.
    Miković A. (2004). Flat spacetime vacuum in loop quantum gravity. Class. Quant. Grav. 21(16): 3909–3922 CrossRefADSMATHGoogle Scholar
  23. M3.
    Miković, A.: String theory and quantum spin networks, http://arxiv.org/list/hepth/0307141, 2003
  24. O.
    Oeckl R. (2003). Generalized lattice gauge theory, spin foams and state sum invariants. J. Geom. Phys. 46: 308–354 MATHCrossRefADSMathSciNetGoogle Scholar
  25. P.
    Penrose, R.: Angular momentum: an approach to combinatorial space-time. Quantum Theory and Beyond. T. Bastin, ed. Cambridge: Cambridge University Press, 1971Google Scholar
  26. PR.
    Ponzano, G., Regge, T.: Semiclassical limit of Racah coefficients, Spectroscopic and Group Theoretical Methods in Physics. F. Bloch et al, eds., Amsterdam: North-Holland, 1968Google Scholar
  27. RoS.
    Rovelli C. and Smolin L. (1995). Spin networks and quantum gravity. Phys. Rev. D 52: 5743–5759 CrossRefADSMathSciNetGoogle Scholar
  28. RS.
    Rourke, C.P., Sanderson, B.J.: Introduction to piecewise-linear topology. Reprint. Springer Study Edition. Berlin-New York: Springer-Verlag, 1982Google Scholar
  29. RT.
    Reshetikhin N. and Turaev V.G. (1991). Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103(3): 547–597 MATHCrossRefADSMathSciNetGoogle Scholar
  30. R1.
    Roberts J. (1995). Skein theory and Turaev-Viro invariants. Topology 34(4): 771–787 MATHCrossRefMathSciNetGoogle Scholar
  31. R2.
    Roberts, J.: Quantum invariants via skein theory. Phd. Thesis, University of Cambridge (April 1994). Available at http://math.ucsd.edu/~justin/Papers/phd.ps.gz
  32. S.
    Smolin L. (1995). Linking topological quantum field theory and nonperturbative quantum gravity. J. Math. Phys 36: 6417–6455 MATHCrossRefADSMathSciNetGoogle Scholar
  33. T1.
    Turaev V.G. (1991). Quantum invariants of 3-manifolds and a glimpse of shadow topology. C. R. Acad. Sci. Paris Sér. I Math. 313(6): 395–398 MATHMathSciNetGoogle Scholar
  34. T2.
    Turaev V.G.: State sum models in low-dimensional topology. Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Tokyo: Math. Soc. Japan, 1991, pp. 689–698Google Scholar
  35. T3.
    Turaev V.G (1993). Quantum invariants of links and 3-valent graphs in 3-manifolds. Inst. Hautes Études Sci. Publ. Math. No. 77: 121–171 MATHCrossRefMathSciNetGoogle Scholar
  36. T4.
    Turaev V.G.: Quantum invariants of knots and 3-manifolds. de Gruyter Studies in Mathematics 18. Berlin: Walter de Gruyter & Co., 1994Google Scholar
  37. TV.
    Turaev V.G. and Viro O.Ya. (1992). State sum invariants of 3-manifolds and quantum 6j-symbols. Topology 31(4): 865–902 MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Departamento de MatemáticaInstituto Superior Técnico (Universidade Técnica de Lisboa)LisboaPortugal
  2. 2.Departamento de MatemáticaUniversidade Lusófona de Humanidades e TecnologiaLisboaPortugal
  3. 3.Grupo de Física Matemática da Universidade de LisboaLisboaPortugal

Personalised recommendations