Advertisement

Communications in Mathematical Physics

, Volume 279, Issue 1, pp 251–283 | Cite as

Asymptotic Error Rates in Quantum Hypothesis Testing

  • K. M. R. Audenaert
  • M. Nussbaum
  • A. Szkoła
  • F. Verstraete
Open Access
Article

Abstract

We consider the problem of discriminating between two different states of a finite quantum system in the setting of large numbers of copies, and find a closed form expression for the asymptotic exponential rate at which the error probability tends to zero. This leads to the identification of the quantum generalisation of the classical Chernoff distance, which is the corresponding quantity in classical symmetric hypothesis testing.

The proof relies on two new techniques introduced by the authors, which are also well suited to tackle the corresponding problem in asymmetric hypothesis testing, yielding the quantum generalisation of the classical Hoeffding bound. This has been done by Hayashi and Nagaoka for the special case where the states have full support.

The goal of this paper is to present the proofs of these results in a unified way and in full generality, allowing hypothesis states with different supports. From the quantum Hoeffding bound, we then easily derive quantum Stein’s Lemma and quantum Sanov’s theorem. We give an in-depth treatment of the properties of the quantum Chernoff distance, and argue that it is a natural distance measure on the set of density operators, with a clear operational meaning.

Keywords

Density Operator Relative Entropy Error Exponent Quantum Hypothesis Quantum Relative Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Audenaert K.M.R., Calsamiglia J., Munoz-Tapia R., Bagan E., Masanes Ll., Acin A. and Verstraete F. (2007). Discriminating States: The Quantum Chernoff Bound. Phys. Rev. Lett. 98: 160501 CrossRefADSGoogle Scholar
  2. 2.
    Bacon D., Chuang I. and Harrow A. (2006). Efficient Quantum Circuits for Schur and Clebsch-Gordan Transforms. Phys. Rev. Lett. 97: 170502 CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Bhatia R. (1997). Matrix Analysis. Springer, Heidelberg Google Scholar
  4. 4.
    Bjelaković I., Deuschel J.D., Krüger T., Seiler R., Siegmund-Schultze Ra. and Szkoła A. (2005). A quantum version of Sanov’s theorem. Commun. Math. Phys. 260: 659–671 CrossRefADSGoogle Scholar
  5. 5.
    Bjelaković, I., Deuschel, J.D., Krüger, T., Seiler, R., Siegmund-Schultze, Ra., Szkoła, A.: Typical support and Sanov large deviation of correlated states. http://arxiv.org/list/math/0703772, 2007
  6. 6.
    Blahut R.E. (1974). Hypothesis Testing and Information Theory. IEEE Trans. Inf. Theory 20: 405–417 MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Carlen E.A. and Lieb E.H. (1999). Advances in Math. Sciences, AMS Transl. (2) 189: 59–62 MathSciNetGoogle Scholar
  8. 8.
    Chernoff H. (1952). A Measure of Asymptotic Efficiency for Tests of a Hypothesis based on the Sum of Observations. Ann. Math. Stat. 23: 493–507 CrossRefMathSciNetGoogle Scholar
  9. 9.
    Csiszár I. and Longo G. (1971). Studia Sci. Math. Hungarica 6: 181–191 Google Scholar
  10. 10.
    Fuchs C.A. and van de Graaf J. (1999). Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory 45: 1216 MATHCrossRefGoogle Scholar
  11. 11.
    Hayashi M. (2006). Quantum Information, An Introduction. Springer, Berlin Google Scholar
  12. 12.
    Hayashi, M.: Error Exponent in Asymmetric Quantum Hypothesis Testing and Its Application to Classical-Quantum Channel coding. http://arxiv.org/list/quant-ph/0611013, 2006
  13. 13.
    Hayashi M. (2001). Asymptotics of quantum relative entropy from a representation theoretical viewpoint. J. Phys. A: Math. Gen. 34: 3413–3419 MATHCrossRefADSGoogle Scholar
  14. 14.
    Helstrom C.W. (1976). Quantum Detection and Estimation Theory. Academic Press, New York Google Scholar
  15. 15.
    Hiai F. and Petz D. (1991). The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143: 99–114 MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Hoeffding W. (1965). Asymptotically Optimal Tests for Multinomial Distributions. Ann. Math. Statist. 36: 369–401 CrossRefMathSciNetGoogle Scholar
  17. 17.
    Holevo A.S. (1978). On Asymptotically Optimal Hypothesis Testing in Quantum Statistics. Theor. Prob. Appl. 23: 411–415 CrossRefGoogle Scholar
  18. 18.
    Kargin V. (2005). On the Chernoff distance for efficiency of quantum hypothesis testing. Ann. Statist. 33: 959–976 MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lieb E.H. (1973). Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv. Math. 11: 267–288 MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Nagaoka, H.: The Converse Part of The Theorem for Quantum Hoeffding Bound. http://arxiv.org/list/quant-ph/0611289, 2006
  21. 21.
    Nussbaum, M., Szkoła, A.: A lower bound of Chernoff type in quantum hypothesis testing. http://arxiv.org/list/quant-ph/0607216, 2006
  22. 22.
    Nussbaum, M., Szkoła, A.: The Chernoff lower bound in quantum hypothesis testing. Preprint No. 69/2006, MPI MiS LeipzigGoogle Scholar
  23. 23.
    Ogawa T. and Hayashi M. (2004). On error exponents in quantum hypothesis testing. IEEE Trans. Inf. Theory 50: 1368–1372 CrossRefMathSciNetGoogle Scholar
  24. 24.
    Ogawa T. and Nagaoka H. (2000). Strong converse and Stein’s lemma in quantum hypothesis testing. IEEE Trans. Inf. Theory 46: 2428 MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Petz D. (1986). Quasi-entropies for finite quantum states. Rep. Math. Phys. 23: 57–65 MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Ruskai M.B. and Lesniewski A. (1999). Monotone Riemannian metrics and relative entropy on noncommutative probability spaces. J. Math. Phys. 40: 5702–5742 MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Uhlmann A. (1971). Sätze über Dichtematrizen. Wiss. Z. Karl-Marx Univ. Leipzig 20: 633–653 MathSciNetGoogle Scholar
  28. 28.
    Uhlmann A. (1976). The ‘transition probability’ in the state space of a *-algebra. Rep. Math. Phys. 9: 273 MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    van der Vaart A.W. (1998). Asymptotic Statistics. University Press, Cambridge MATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • K. M. R. Audenaert
    • 1
    • 2
  • M. Nussbaum
    • 3
  • A. Szkoła
    • 4
  • F. Verstraete
    • 5
  1. 1.Institute for Mathematical SciencesImperial College LondonLondonUK
  2. 2.Dept. of MathematicsRoyal Holloway, University of LondonEghamUK
  3. 3.Department of MathematicsCornell UniversityIthacaUSA
  4. 4.Max Planck Institute for Mathematics in the SciencesLeipzigGermany
  5. 5.Fakultät für PhysikUniversität WienWienAustria

Personalised recommendations