Communications in Mathematical Physics

, Volume 279, Issue 1, pp 147–168 | Cite as

Dividing Quantum Channels

Open Access
Article

Abstract

We investigate the possibility of dividing quantum channels into concatenations of other channels, thereby studying the semigroup structure of the set of completely-positive trace-preserving maps. We show the existence of ‘indivisible’ channels which can not be written as non-trivial products of other channels and study the set of ‘infinitesimal divisible’ channels which are elements of continuous completely positive evolutions. For qubit channels we obtain a complete characterization of the sets of indivisible and infinitesimal divisible channels. Moreover, we identify those channels which are solutions of time-dependent master equations for both positive and completely positive evolutions. For arbitrary finite dimension we prove a representation theorem for elements of continuous completely positive evolutions based on new results on determinants of quantum channels and Markovian approximations.

Keywords

Quantum Channel Positive Evolution Trace Preserve Markovian Approximation Positive Operator Value Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Holevo, A.S.: Statistical Structure of Quantum Theory. Springer Lecture Notes in Physics, Berlin- Heidelberg-New York: Springer, 2001Google Scholar
  2. 2.
    Horn R.A. (1967). Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8: 219 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Holevo A.S. (1986). Theor. Probab. Appl. 32: 560 Google Scholar
  4. 4.
    Denisov L.V. (1988). Th. Prob. Appl. 33: 392 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Jamiolkowski A. (1972). Rep. Math. Phys. 3: 275 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Choi M.D. (1975). Lin. Alg. Appl. 10: 285 MATHCrossRefGoogle Scholar
  7. 7.
    Kraus K. (1983). States, Effects and Operations. Springer, Berlin-Heidelberg-New York MATHGoogle Scholar
  8. 8.
    Wolf M.M. and Perez-Garcia D. (2007). Phys. Rev. A 75: 012303 CrossRefADSGoogle Scholar
  9. 9.
    Lindbald G. (1976). Commun. Math. Phys. 48: 119 CrossRefADSGoogle Scholar
  10. 10.
    Gorini V., Kossakowski A. and Sudarshan E.C.G. (1976). J. Math. Phys. 17: 821 CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Davies E.B. (1980). Rep. Math. Phys. 17: 249 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Perez-Garcia D., Wolf M.M., Petz D. and Ruskai M.B. (2006). J. Math. Phys. 47: 083506 CrossRefMathSciNetGoogle Scholar
  13. 13.
    Schmidt, W.M.: Diophantine Approximation. Lecture Notes in Math. 785, Berlin-Heidelberg-New York: Springer Verlag, 1980Google Scholar
  14. 14.
    Bhatia, R.: Matrix Analysis. Springer Graduate Texts in Mathematics 169, Berlin-Heidelberg-New York: Springer, 1997Google Scholar
  15. 15.
    Streater R.F. (1995). Statistical Dynamics. Imperial College Press, London MATHGoogle Scholar
  16. 16.
    Wigner, E.P.: Gruppentheorie. Braunschweig: Vieweg 1931; Group Theory. London: Academic Press, 1959Google Scholar
  17. 17.
    Bargmann V. (1964). J. Math. Phys. 5: 862 MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Kadison R. (1965). Topology 3(supp. 2): 177 CrossRefMathSciNetGoogle Scholar
  19. 19.
    Buscemi F., D’Ariano G.M., Keyl M., Perinotti P. and Werner R. (2005). J. Math. Phys. 46: 082109 CrossRefMathSciNetGoogle Scholar
  20. 20.
    Nielsen M.A. and Chuang I.L. (2000). Quantum Computation and Quantum Information. Cambridge University Press, Cambridge MATHGoogle Scholar
  21. 21.
    Uhlmann A. (1976). Rep. Math. Phys. 9: 273 MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Stoermer E. (1963). Acta Math. 110: 233 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    King C. and Ruskai M.B. (2001). IEEE Trans. Info. Theory 47: 192 MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Fujiwara A. and Algoet P. (1999). Phys. Rev. A 59: 3290 CrossRefADSGoogle Scholar
  25. 25.
    Ruskai M.B., Szarek S. and Werner E. (2002). Lin. Alg. Appl. 347: 159 MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Gorini V. and Sudarshan E.C.G. (1976). Commun. Math. Phys. 46: 43 MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Verstraete, F., Verschelde, H.: http://arxiv.org/list/quant-ph/0202124, 2002; F. Verstraete, J. Dehaene, B. De Moor.: Phys. Rev. A 64, 010101(R) (2001)
  28. 28.
    Vollbrecht K.G.H. and Werner R.F. (2000). J. Math. Phys. 41: 6772 MATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Bacon D., Childs A.M., Chuang I.L., Kempe J., Leung D.W. and Zhou X. (2001). Phys. Rev. A 64: 062302 CrossRefADSGoogle Scholar
  30. 30.
    Eisert, J., Wolf, M.M.: http://arxiv.org/list/quant-ph/0505151, 2005; ‘Gaussian quantum channels’. In: Quantum Information with continuous variables of atoms and light, N. Cerf, G. Leuchs, E.S. Polzik (eds.) London: Imperial College Press, 2006
  31. 31.
    Verstraete F., Cirac J.I., Latorre J.I., Rico E. and Wolf M.M. (2005). Phys. Rev. Lett. 94: 140601 CrossRefADSGoogle Scholar
  32. 32.
    Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: arXiv: 0711.3172 (2007)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Max-Planck-Institute for Quantum OpticsGarchingGermany

Personalised recommendations