Communications in Mathematical Physics

, Volume 278, Issue 2, pp 307–327 | Cite as

Yang-Mills Detour Complexes and Conformal Geometry

Article

Abstract

Working over a pseudo-Riemannian manifold, for each vector bundle with connection we construct a sequence of three differential operators which is a complex (termed a Yang-Mills detour complex) if and only if the connection satisfies the full Yang-Mills equations. A special case is a complex controlling the deformation theory of Yang-Mills connections. In the case of Riemannian signature the complex is elliptic. If the connection respects a metric on the bundle then the complex is formally self-adjoint. In dimension 4 the complex is conformally invariant and generalises, to the full Yang-Mills setting, the composition of (two operator) Yang-Mills complexes for (anti-)self-dual Yang-Mills connections. Via a prolonged system and tractor connection a diagram of differential operators is constructed which, when commutative, generates differential complexes of natural operators from the Yang-Mills detour complex. In dimension 4 this construction is conformally invariant and is used to yield two new sequences of conformal operators which are complexes if and only if the Bach tensor vanishes everywhere. In Riemannian signature these complexes are elliptic. In one case the first operator is the twistor operator and in the other sequence it is the operator for Einstein scales. The sequences are detour sequences associated to certain Bernstein-Gelfand-Gelfand sequences.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah M.F., Hitchin N. and Singer I.M. (1978). Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. London Ser A 362: 425–461 MATHADSMathSciNetGoogle Scholar
  2. 2.
    Bach R. (1921). Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs. Math. Z. 9: 110–135 CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bailey T.N., Eastwood M.G. and Gover A.R. (1994). Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. Math. 24: 1191–1217 MATHMathSciNetGoogle Scholar
  4. 4.
    Baston, R.J., Mason, L.J.: The conformal Einstein equations, In: Further advances in twistor theory: Volume II: Integrable systems, conformal geometry and gravitation, edited by L.J. Mason, L.P. Hughston, P.Z. Kobak, Essex: Longman, 1995Google Scholar
  5. 5.
    Baum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistors and Killing spinors on Riemannian manifolds, Teubner-Texte zur Mathematik, 124. Stuttgart: B.G. Teubner Verlagsgesellschaft mbH, 1991Google Scholar
  6. 6.
    Besse, A.L.: Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10. Berlin: Springer-Verlag, 1987Google Scholar
  7. 7.
    Boe B.D. and Collingwood D.H. (1985). A comparison theory for the structure of induced representations, II. Math. Z. 190: 1–11 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Branson T. (1995). Sharp inequalities, the functional determinant and the complementary series. Trans. Amer. Math. Soc. 347: 3671–3742 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Branson, T.: Conformal Structure and spin geometry. In: Dirac operators: yesterday and today. Proceedings of the Summer School and Workshop held in Beirut, August 27–September 7, 2001, edited by J.-P. Bourguignon, T. Branson, A. Chamseddine, O. Hijazi, R.J. Stanton. Somerville, MA: International Press, 2005Google Scholar
  10. 10.
    Branson T. (2005). Q-curvature and spectral invariants. Rend. Circ. Mat. Palermo (2) Suppl. No. 75: 11–55 MathSciNetGoogle Scholar
  11. 11.
    Branson T. and Gover A.R. (2005). Conformally invariant operators, differential forms, cohomology and a generalisation of Q-curvature. Comm. Part. Differ. Equs. 30: 1611–1669 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Branson T. and Gover A.R. (2007). The conformal deformation detour complex for the obstruction tensor. Proc. Amer. Math. Soc. 135: 2961–2965 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Čap, A., Gover, A.R.: Tractor bundles for irreducible parabolic geometries. In: Global analysis and harmonic analysis (Marseille-Luminy, 1999), Sémin. Congr. 4, Paris: Soc. Math. France, 2000, pp. 129–154Google Scholar
  14. 14.
    Čap A. and Gover A.R. (2002). Tractor calculi for parabolic geometries. Trans. Amer. Math. Soc. 354: 1511–1548 CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Čap A., Slovák J. and Souček V. (2001). Bernstein-Gelfand-Gelfand sequences. Ann. Math. 154: 97–113 CrossRefMATHGoogle Scholar
  16. 16.
    Čap, A., Souček, V.: Subcomplexes in Curved BGG-Sequences. http://arxiv.org/list/math.DG/0508534, 2005
  17. 17.
    Cartan E. (1923). Les espaces à connexion conforme. Ann. Soc. Pol. Math. 2: 171–202 Google Scholar
  18. 18.
    Chang S.-Y.A. (2004). Non-linear elliptic equations in conformal geometry. Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zürich Google Scholar
  19. 19.
    Donaldson, S.K.: Floer homology groups in Yang-Mills theory. Cambridge Tracts in Mathematics 147. Cambridge: Cambridge University Press, 2002Google Scholar
  20. 20.
    Eastwood M. (1996). Notes on conformal differential geometry. Rend. Circ. Mat. Palermo (2) Suppl. No. 43: 57–76 MathSciNetGoogle Scholar
  21. 21.
    Eastwood, M.G., Rice, J.W.: Conformally invariant differential operators on Minkowski space and their curved analogues. Commun. Math. Phys. 109, 207–228 (1987); Erratum: Commun. Math. Phys. 144, 213 (1992)Google Scholar
  22. 22.
    Eastwood M.G. and Slovák J. (1997). Semiholonomic Verma modules. J. Alg. 197: 424–448 MATHCrossRefGoogle Scholar
  23. 23.
    Fefferman, C., Graham, C.R.: Conformal invariants. In: Elie Cartan et les mathématiques d’aujourd’hui, Astérisque 95–116, hors série (Paris: SMF, 1985)Google Scholar
  24. 24.
    Fefferman C. and Graham C.R. (2002). Q-curvature and Poincaré metrics. Math. Res. Lett. 9: 139–151 MATHMathSciNetGoogle Scholar
  25. 25.
    Friedrich T. (1989). On the conformal relation between twistors and Killing spinors. Rend. Circ. Mat. Palermo (2) Suppl. No. 2: 59–75 Google Scholar
  26. 26.
    Friedrich, T.: Dirac-Operatoren in der Riemannschen Geometrie, Mit einem Ausblick auf die Seiberg-Witten-Theorie. Advanced Lectures in Mathematics. Braunschweig: Friedr. Vieweg & Sohn, 1997Google Scholar
  27. 27.
    Gover A.R. (1999). Aspects of parabolic invariant theory. Rend. Circ. Mat. Palermo (2) Suppl. No. 59: 25–47 MathSciNetGoogle Scholar
  28. 28.
    Gover, A.R.: Almost conformally Einstein manifolds and obstructions. In: Differential geometry and its applications, Prague: Matfyzpress, 2005, pp. 247–260Google Scholar
  29. 29.
    Gover A.R. (2006). Laplacian operators and Q-curvature on conformally Einstein manifolds. Math. Ann. 336: 311–334 MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Gover, A.R., Leitner, F.: A sub-product construction of Poincare-Einstein metrics. http://arxiv.org/list/math.DG/0608044, 2006
  31. 31.
    Gover A.R. and Nurowski P. (2006). Obstructions to conformally Einstein metrics in n dimensions. J. Geom. Phys. 56: 450–484 MATHCrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Gover A.R. and Peterson L.J. (2003). Conformally invariant powers of the Laplacian, Q-curvature and tractor calculus. Commun. Math. Phys. 235: 339–378 MATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Gover, A.R., Šilhan, J.: The conformal Killing equation on forms – prolongations and applications, Diff. Geom. Applic., to appear. http://arxiv.org/list/math.DG/0601751, 2006
  34. 34.
    Graham, C.R., Hirachi, K.: The ambient obstruction tensor and Q-curvature. In: AdS/CFT correspondence: Einstein metrics and their conformal boundaries, IRMA Lect. Math. Theor. Phys. 8, Zürich: Eur. Math. Soc., 2005, pp. 59–71Google Scholar
  35. 35.
    Graham C.R., Jenne R., Mason L. and Sparling G. (1992). Conformally invariant powers of the Laplacian, I: existence. J. London Math. Soc. 46: 557–565 MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Graham C.R. and Zworski M. (2003). Scattering matrix in conformal geometry. Invent. Math. 152: 89–118 MATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Korzynski M. and Lewandowski J. (2003). The normal Cartan connection and the Bach tensor. Class. Quant. Grav. 20: 3745–3764 MATHCrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Kozameh C., Newman E.T and Tod K.P. (1985). Conformal Einstein Spaces. GRG 17: 343–352 MATHMathSciNetGoogle Scholar
  39. 39.
    Merkulov S. (1984). A conformally invariant theory of gravitation and electromagnetism. Class. Quant. Grav. 1: 349–354 CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Lee J.M. and Parker T.H. (1987). The Yamabe problem. Bull. Amer. Math. Soc. 17: 37–91 MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Penrose, R., Rindler, W.: Wolfgang, Spinors and space-time. Vol. 1 and Vol. 2. Spinor and twistor methods in space-time geometry, Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge University Press, 1987, 1988Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. Rod Gover
    • 1
  • Petr Somberg
    • 2
  • Vladimír Souček
    • 2
  1. 1.Department of MathematicsThe University of AucklandAuckland 1New Zealand
  2. 2.Mathematical Institute, Faculty of Mathematics and PhysicsCharles UniversityPrahaCzech Republic

Personalised recommendations