Advertisement

Communications in Mathematical Physics

, Volume 278, Issue 1, pp 145–177 | Cite as

Results on Normal Forms for FPU Chains

  • Andreas Henrici
  • Thomas KappelerEmail author
Article

Abstract

In this paper we prove, among other results, that near the equilibirum position, any periodic FPU chain with an odd number N of particles admits a Birkhoff normal form up to order 4, whereas any periodic FPU chain with N even admits a resonant normal form up to order 4. This resonant normal form of order 4 turns out to be completely integrable. Further, for N odd, we obtain an explicit formula of the Hessian of its Hamiltonian at the fixed point.

Keywords

Normal Form Equilibrium Point Canonical Transformation Minimal Polynomial Real Zero 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bambusi D. and Ponno A. (2005). Korteweg-de Vries equation and energy sharing in Fermi-Pasta-Ulam. CHAOS 15: 015107 CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bambusi D. and Ponno A. (2006). On Metastability in FPU. Commun. Math. Phys. 264: 539–561 CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Berman G.P. and Izrailev F.M. (2005). The Fermi-Pasta-Ulam problem: 50 years of progress. CHAOS 15(1): 015104.1–015104.18 CrossRefMathSciNetGoogle Scholar
  4. 4.
    Broer H.W. (2004). KAM theory: the legacy of Kolmogorov’s 1954 paper. Bull. AMS (New Series) 41(4): 507–521 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fermi, E., Pasta, J., Ulam, S.: Studies of non linear problems. Los Alamos Rpt. LA-1940 (1955). In: Collected Papers of Enrico Fermi. Chicago, IL: University of Chicago Press, 1965, Volume II, Theory, Methods and Applications, (2nd ed., New York: Marcel Dekker, 2000), pp. 978–988Google Scholar
  6. 6.
    Henrici, A., Kappeler, T.: Global Birkhoff coordinates for the periodic Toda lattice. Preprint, 2006Google Scholar
  7. 7.
    Henrici, A., Kappeler, T.: Birkhoff normal form for the periodic Toda lattice. http://arxiv.org/list/nlin.SI/0609045, 2006, to appear in Contemp. Math.
  8. 8.
    Henrici, A., Kappeler, T.: Resonant normal form for even periodic FPU chains. arXiv: 0709.2624 [nlin.SI]Google Scholar
  9. 9.
    Kappeler, T., Pöschel, J.: KdV & KAM. Ergebnisse der Mathematik, 3. Folge, 45. Berlin: Springer, 2003Google Scholar
  10. 10.
    Nishida T. (1971). A note on an existence of conditionally periodic oscillation in a one-dimensional lattice. Mem. Fac. Engrg. Kyoto Univ. 33: 27–34 MathSciNetGoogle Scholar
  11. 11.
    Pöschel J. (1982). Integrability of Hamiltonian Systems on Cantor Sets. Comm. Pure Appl. Math. 35: 653–695 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pöschel J. (1999). On Nekhoroshev’s Estimate at an Elliptic Equilibrium. Int. Math. Res. Not. 4: 203–215 CrossRefGoogle Scholar
  13. 13.
    Rink B. (2001). Symmetry and resonance in periodic FPU chains. Commun. Math. Phys. 218: 665–685 zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Rink B. (2002). Direction reversing travelling waves in the Fermi-Pasta-Ulam chain. J. Nonlinear Science 12: 479–504 zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Rink B. (2006). Proof of Nishida’s conjecture on anharmonic lattices. Commun. Math. Phys. 261: 613–627 zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Toda, M.: Theory of Nonlinear Lattices, 2nd enl. ed., Springer Series in Solid-State Sciences 20. Berlin: Springer, 1989Google Scholar
  17. 17.
    Vander Waerden B.L. (1966). Algebra I. Heidelberger Taschenbücher.. Springer, Berlin Google Scholar
  18. 18.
    Weissert T.P. (1997). The genesis of simulation in dynamics: pursuing the Fermi-Pasta-Ulam problem. Springer, New York zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institut für MathematikUniversität ZürichZürichSwitzerland

Personalised recommendations