Communications in Mathematical Physics

, Volume 277, Issue 1, pp 69–81 | Cite as

The Product Over All Primes is 4π2

Article

Abstract

We generalize the classical definition of zeta-regularization of an infinite product. The extension enjoys the same properties as the classical definition, and yields new infinite products. With this generalization we compute the product over all prime numbers answering a question of Ch. Soulé. The result is 4π2. This gives a new analytic proof, companion to Euler’s classical proof, that the set of prime numbers is infinite.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AZ.
    Aigner, M., Ziegler, G.M.:Proofs from the book. Berlin-Heidelberg, New York: Springer Verlag, 2nd Edition, 2000Google Scholar
  2. Bo.
    Borel, É.: Leçons sur les series divergentes. Paris: Gauthier-Villars, 1928MATHGoogle Scholar
  3. Da.
    Dahlquist G. (1951). On the analytic continuation of Eulerian products. Arkiv för Matematik 1: 533–554 CrossRefADSMathSciNetGoogle Scholar
  4. De.
    Deninger, C.: Some analogies between Number Theory and Dynamical Systems on foliated spaces. Doc. Mat. J. DMV Extra Volume ICM I, 163–186 (1998)Google Scholar
  5. EORBZ.
    Elizalde, E., Odintsov, S.D., Romeo, A., Bytsenko, A.A., Zerbini, S.: Zeta regularization techniques with applications. Singapore, World Scientific, 1994Google Scholar
  6. Euc.
    Euclid L. (1956). The Thirteen Books of the Elements, Translated with introduction and commentary by Thomas L. Heath, Vol. 1, 2, 3. Dover Publications, New York Google Scholar
  7. Eul.
    Euler, L.: Introductio in Analysin Infinitorum. Facsimil edition and commented translation of the edition of 1748 stored in the library of the Real Instituto y Observatorio de la Armada en San Fernando, eds. A.J. Duran Guardeño, F.J. Pérez Fernández Bacelona: Real Socieded Mathematic Espazola, 2000Google Scholar
  8. Ha.
    Hardy G.H. (1963). Divergent series. Clarendon Press, Oxford Google Scholar
  9. Il.
    Illies G. (2001). Regularized products and determinants. Commun. Math. Phys. 220: 69–94 MATHCrossRefADSMathSciNetGoogle Scholar
  10. Ko.
    Koblitz, N.: p-adic numbers, p-adic analysis and zeta functions. Graduate Texts in Mathematics 58, 2nd edition, Berlin Heidelberg-New York: Springer, 1998Google Scholar
  11. LW.
    Landau E. and Walfisz A. (1920). Über Die Nichtfortsetzbarkeit Einiger Durch Dirichletsche Reihen Definierter Funktionen. Rendiconti del Circolo Matematico di Palermo 44: 82–86 Google Scholar
  12. MG-PM1.
    Muñoz Garcia, E., Pérez Marco, R.: The product over all prime numbers is 4π 2. Preprint IHES M/03/34, www.ihes.fr, May 2003
  13. MG-PM2.
    Muñoz Garcia, E., Pérez Marco, R.: Super-regularization of infinite products. Preprint IHES M/03/52, www.ihes.fr, August 2003
  14. Ra.
    Ramis, J.-P.: Séries divergentes et théories asymptotiques. In: Panoramas et synthèses, Paris: Société Mathématique de France, 1993Google Scholar
  15. Re.
    Remmert, R.: Classical topics in Complex Function Theory. Graduate Texts in Mathematics 172, Berlin, Heidelberg-New York: Springer VerlagGoogle Scholar
  16. RS.
    Ray D. and Singer I. (1973). Analytic torsion for analytic manifolds. Ann. Math. 98: 154–177 CrossRefMathSciNetGoogle Scholar
  17. SABK.
    Soulé C., Abramovich D., Burnol J.-F. and Kramer J. (1992). Lectures on Arakelov Geometry. Cambridge Studies in Advanced Mathematics. Cambridge Univ. Press, Cambridge Google Scholar
  18. Siu.
    Siu Y.-T. (1974). Techniques of extension of analytic objects. Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, New York Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute for the International Education of Students, IESMadridSpain
  2. 2.LAGA, CNRS UMR 7539Université Paris 13VilletaneuseFrance

Personalised recommendations