Communications in Mathematical Physics

, Volume 276, Issue 2, pp 437–472

A Multi-Dimensional Lieb-Schultz-Mattis Theorem



For a large class of finite-range quantum spin models with half-integer spins, we prove that uniqueness of the ground state implies the existence of a low-lying excited state. For systems of linear size L, with arbitrary finite dimension, we obtain an upper bound on the excitation energy (i.e., the gap above the ground state) of the form (C log L)/L. This result can be regarded as a multi-dimensional Lieb-Schultz-Mattis theorem [14] and provides a rigorous proof of the main result in [8].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Affleck I. and Lieb E.H. (1986). A proof of part of Haldane’s conjecture on quantum spin chains. Lett. Math. Phys. 12: 57–69 CrossRefMathSciNetGoogle Scholar
  2. 2.
    Affleck I., Kennedy T., Lieb E.H. and Tasaki H. (1988). Valence Bond Ground States in Isotropic Quantum Antiferromagnets. Commun. Math. Phys. 115: 477–528 CrossRefMathSciNetGoogle Scholar
  3. 3.
    Aizenman M. and Nachtergaele B. (1994). Geometric aspects of quantum spin states. Commun. Math. Phys. 164: 17–63 MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Bratteli O. and Robinson D. (1997). Operator algebras and quantum statistical mechanics 2. Springer Verlag, New York, NY MATHGoogle Scholar
  5. 5.
    Dyson F., Lieb E.H. and Simon B. (1978). Phase transitions in quantum spin systems with isotropic and non-isotropic interactions. J. Stat. Phys. 18: 335–383 CrossRefMathSciNetGoogle Scholar
  6. 6.
    Haldane F.D.M. (1983). Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model. Phys. Lett. 93: 464–468 CrossRefMathSciNetGoogle Scholar
  7. 7.
    Haldane F.D.M. (1983). Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50: 1153–1156 CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Hastings M.B. (2004). Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69: 104431–14 CrossRefADSGoogle Scholar
  9. 9.
    Hastings M.B. and Koma T. (2006). Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265: 781–804 MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Kennedy T., Lieb E.H. and Shastry B.S. (1988). Existence of Néel order in some spin 1/2 Heisenberg antiferromagnets. J. Stat. Phys. 53: 1019–1030 CrossRefMathSciNetGoogle Scholar
  11. 11.
    Koma T. and Tasaki H. (1994). Symmetry breaking and finite-size effects in quantum many-body systems. J. Stat. Phys. 76: 745–803 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Landau L., Fernando-Perez J. and Wreszinski W.F. (1981). Energy gap, clustering, and the Goldstone theorem in statistical mechanics. J. Stat. Phys. 26: 755–766 CrossRefGoogle Scholar
  13. 13.
    Lieb E. and Mattis D. (1962). Ordering energy levels in interacting spin chains. Journ. Math. Phys. 3: 749–751 MATHCrossRefGoogle Scholar
  14. 14.
    Lieb E., Schultz T. and Mattis D. (1961). Two soluble models of an antiferromagnetic chain. Ann. Phys. (N.Y.) 16: 407–466 MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Lieb E.H. and Robinson D.W. (1972). The finite group velocity of quantum spin systems. Commun. Math. Phys. 28: 251–257 CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Manousakis E. (1991). The spin-1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides. Rev. Mod. Phys. 63: 1–62 CrossRefADSGoogle Scholar
  17. 17.
    Nachtergaele, B.: Quasi-state decompositions for quantum spin systems. Probability Theory and Mathematical Statistics. Proceedings of the 6th Vilnius Conference (Grigelionis, B. et al., ed.), Utrecht- Tokyo-Vilnius, VSP/Tev, 1994, pp. 565–590Google Scholar
  18. 18.
    Nachtergaele B., Ogata Y. and Sims R. (2006). Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124: 1–13 MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Nachtergaele B. and Sims R. (2007). Recent progress in quantum spin systems. Markov Processes Rel. Fields. 13(2): 315–329 Google Scholar
  20. 20.
    Nachtergaele B. and Sims R. (2006). Lieb-Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265: 119–130 MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Sachdev, S.: Quantum antiferromagnets in two dimensions. In: Low dimensional quantum field theories for condensed matter physicists. Yu Lu, S., Lundqvist, G., Morandi, eds., Singapore: World Scientific, 1995Google Scholar
  22. 22.
    Sachdev S. and Park K. (2002). Ground states of quantum antiferromagnets in two dimensions. Annals of Physics (N.Y.) 298: 58–122 MATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Simon, B.: The statistical mechanics of lattice gases. Princeton Series in Physics, Vol. 1, Princeton, NJ: Princeton University Press, 1993Google Scholar
  24. 24.
    Tasaki, H.: Low-lying excitation in one-dimensional lattice electron system., 2004Google Scholar
  25. 25.
    Yamanaka M., Oshikawa M. and Affleck I. (1997). Nonperturbative approach to Luttinger’s theorem in one dimension. Phys. Rev. Lett. 79: 1110–1113 CrossRefADSGoogle Scholar

Copyright information

© B. Nachtergaele and R. Sims 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California at DavisDavisUSA

Personalised recommendations