Communications in Mathematical Physics

, Volume 275, Issue 3, pp 659–684 | Cite as

Regularized Determinants of the Laplacian for cofinite kleinian groups with Finite-Dimensional Unitary Representations

  • Joshua S. FriedmanEmail author


For cofinite Kleinian groups (or equivalently, finite-volume three-dimensional hyperbolic orbifolds) with finite-dimensional unitary representations, we evaluate the regularized determinant of the Laplacian using W. Müller’s regularization. We give an explicit formula relating the determinant to the Selberg zeta-function.


Riemann Surface Heat Kernel Unitary Representation Eisenstein Series Kleinian Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BCZ97.
    Bytsenko A.A., Cognola G. and Zerbini S. (1997). Determinant of the Laplacian on a non-compact three-dimensional hyperbolic manifold with finite volume. J. Phys. A 30(10): 3543–3552 zbMATHCrossRefADSGoogle Scholar
  2. BJP.
    Borthwick D., Judge C. and Perry P. (2003). Determinants of Laplacians and isopolar metrics on surfaces of infinite area. Duke Math. J. 118: 69–102 Google Scholar
  3. BK62.
    Birman M.Š. and Kreĭn M.G. (1962). On the theory of wave operators and scattering operators. Dokl. Akad. Nauk SSSR 144: 475–478 Google Scholar
  4. Dav89.
    Davies, E.B.: Heat kernels and spectral theory. Cambridge Tracts in Mathematics, Vol. 92. Cambridge: Cambridge University Press, 1989Google Scholar
  5. DC76.
    Dowker J.S. and Critchley R. (1976). Scalar effective Lagrangian in de Sitter space. Phys. Rev. D (3) 13(2): 224–234 CrossRefADSGoogle Scholar
  6. DP86.
    D’Hoker E. and Phong D.H. (1986). On determinants of Laplacians on Riemann surfaces. Commun. Math. Phys. 104(4): 537–545 zbMATHCrossRefADSGoogle Scholar
  7. Efr88.
    Efrat I. (1988). Determinants of Laplacians on surfaces of finite volume. Commun. Math. Phys. 119(3): 443–451 zbMATHCrossRefADSGoogle Scholar
  8. Efr91.
    Efrat, I.: Erratum: Determinants of Laplacians on surfaces of finite volume [Commun. Math. Phys. 119(3), 443–451 (1988)]. Commun. Math. Phys. 138(3):607 (1991)Google Scholar
  9. EGM98.
    Elstrodt, J., Grunewald, F., Mennicke, J.: Groups acting on hyperbolic space. Springer Monographs in Mathematics, Berlin: Springer-Verlag, 1998Google Scholar
  10. EOR+94.
    Elizalde, E., Odintsov, S.D., Romeo, A., Bytsenko, A.A., Zerbini, S.: Zeta regularization techniques with applications. River Edge, NJ: World Scientific Publishing Co. Inc., 1994Google Scholar
  11. Fri05a.
    Friedman, J.S.: The Selberg trace formula and Selberg zeta-function for cofinite Kleinian groups with finite-dimensional unitary representations. Ph.D. thesis, Stony Brook University, 2005, available at, 2006Google Scholar
  12. Fri05b.
    Friedman J.S. (2005). The Selberg trace formula and Selberg zeta-function for cofinite Kleinian groups with finite-dimensional unitary representations. Math. Z. 250(4): 939–965 zbMATHCrossRefGoogle Scholar
  13. GR65.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products. Fourth edition prepared by Ju. V. Geronimus and M. Ju. Ceĭtlin. Translated from the Russian by Scripta Technica, Inc. Translation edited by Alan Jeffrey, New York: Academic Press, 1965Google Scholar
  14. Haw77.
    Hawking S.W. (1977). Zeta function regularization of path integrals in curved spacetime. Commun. Math. Phys. 55(2): 133–148 zbMATHCrossRefADSGoogle Scholar
  15. Kre53.
    Kreĭn M.G. (1953). On the trace formula in perturbation theory. Mat. Sbornik N.S. 33(75): 597–626 Google Scholar
  16. Mül83.
    Müller W. (1983). Spectral theory for Riemannian manifolds with cusps and a related trace formula. Math. Nachr. 111: 197–288 zbMATHCrossRefGoogle Scholar
  17. Mül87.
    Müller, W.: Manifolds with cusps of rank one, Lecture Notes in Mathematics, Vol. 1244. Berlin: Springer-Verlag, 1987Google Scholar
  18. Mül92.
    Müller W. (1992). Spectral geometry and scattering theory for certain complete surfaces of finite volume. Invent. Math. 109(2): 265–305 zbMATHCrossRefADSGoogle Scholar
  19. Mül98.
    Müller W. (1998). Relative zeta functions, relative determinants and scattering theory. Commun. Math. Phys. 192(2): 309–347 zbMATHCrossRefADSGoogle Scholar
  20. Par05.
    Park J. (2005). Eta invariants and regularized determinants for odd dimensional hyperbolic manifolds with cusps. Amer. J. Math. 127(3): 493–534 zbMATHCrossRefGoogle Scholar
  21. Sar87.
    Sarnak P. (1987). Determinants of Laplacians. Commun. Math. Phys. 110(1): 113–120 zbMATHCrossRefADSGoogle Scholar
  22. Ven82.
    Venkov, A.B.: Spectral theory of automorphic functions. Proc. Steklov Inst. Math. (1982), no. 4(153), ix+163 pp. (1983), a translation of Trudy Mat. Inst. Steklov. 153(1981)Google Scholar
  23. VKF73.
    Venkov A.B., Kalinin V.L. and Faddeev L.D. (1973). A nonarithmetic derivation of the Selberg trace formula. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 37: 5–42 Google Scholar
  24. Yaf92.
    Yafaev, D.R.: Mathematical scattering theory. Translations of Mathematical Monographs, Vol. 105. Amer. Math. Soc. 1992 Translated from the Russian by J. R. SchulenbergerGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Mathematics and SciencesUnited States Merchant Marine AcademyKings PointUSA

Personalised recommendations