Advertisement

Communications in Mathematical Physics

, Volume 274, Issue 1, pp 31–64 | Cite as

Unoriented WZW Models and Holonomy of Bundle Gerbes

  • Urs Schreiber
  • Christoph SchweigertEmail author
  • Konrad Waldorf
Article

Abstract

The Wess-Zumino term in two-dimensional conformal field theory is best understood as a surface holonomy of a bundle gerbe. We define additional structure for a bundle gerbe that allows to extend the notion of surface holonomy to unoriented surfaces. This provides a candidate for the Wess-Zumino term for WZW models on unoriented surfaces. Our ansatz reproduces some results known from the algebraic approach to WZW models.

manche meinen

lechts und rinks

kann man nicht velwechsern

werch ein illtum

Ernst Jandl [Jan95]

Keywords

Line Bundle Local Data Target Space Fundamental Domain Local Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alv85.
    Alvarez O. (1985). Topological Quantization and Cohomology. Commun. Math. Phys. 100: 279–309 zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. BCW01.
    Bachas C., Couchoud N. and Windey P. (2001). Orientifolds of the 3-Sphere. JHEP 12: 003 CrossRefADSMathSciNetGoogle Scholar
  3. BG88.
    Berger, M., Gostiaux, B.: Differential Geometry: Manifolds, Curves, and Surfaces. Volume 115 of Graduate Texts in Mathematics, Berlin-Heidelberg-New York: Springer, 1988Google Scholar
  4. BPS92.
    Bianchi M., Pradisi G. and Sagnotti A. (1992). Toroidal Compactification and Symmetry Breaking in Open-String Theories. Nucl. Phys. B 376: 365–386 CrossRefADSMathSciNetGoogle Scholar
  5. Bru02.
    Brunner I. (2002). On Orientifolds of wzw Models and their Relation to Geometry. JHEP 01: 007 CrossRefADSMathSciNetGoogle Scholar
  6. Bry93.
    Brylinski, J.-L.: Loop spaces, Characteristic Classes and Geometric Quantization. Volume 107 of Progress in Mathematics, Basel: Birkhäuser, 1993Google Scholar
  7. Bry00.
    Brylinski, J.-L.: Gerbes on complex reductive Lie Groups. http://arxiv.org/list/math/0002158, 2000Google Scholar
  8. BT82.
    Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology, Volume 82 of Graduate Texts in Mathematics, Berlin-Heidelberg-New York: Springer, 1982Google Scholar
  9. CJM02.
    Carey A.L., Johnson S. and Murray M.K. (2002). Holonomy on D-Branes. J. Geom. Phys. 52(2): 186–216 MathSciNetGoogle Scholar
  10. FHS+00.
    Fuchs J., Huiszoon L.R., Schellekens A.N., Schweigert C. and Walcher J. (2000). Boundaries, Crosscaps and simple Currents. Phys. Lett. B 495(3–4): 427–434 zbMATHADSMathSciNetGoogle Scholar
  11. FPS94.
    Fioravanti D., Pradisi G. and Sagnotti A. (1994). Sewing Constraints and non-orientable Open Strings. Phys. Lett. B 321: 349–354 CrossRefADSMathSciNetGoogle Scholar
  12. FRS04.
    Fuchs J., Runkel I. and Schweigert C. (2004). TFT Construction of RCFT Correlators II: unoriented World Sheets. Nucl. Phys. B 678(3): 511–637 zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. Gaw88.
    Gawȩdzki, K.: Topological Actions in two-dimensional Quantum Field Theories. In: Non- perturbative Quantum Field Theory, London: Plenum Press, 1988Google Scholar
  14. Gom03.
    Gomi K. (2003). Equivariant smooth Deligne Cohomology. Osaka J. Math. 42(2): 309–337 MathSciNetGoogle Scholar
  15. GR02.
    Gawȩdzki K. and Reis N. (2002). WZW Branes and Gerbes. Rev. Math. Phys. 14(12): 1281–1334 CrossRefMathSciNetGoogle Scholar
  16. GR03.
    Gawȩdzki K. and Reis N. (2003). Basic Gerbe over non-simply connected compact Groups. J. Geom. Phys. 50(1–4): 28–55 MathSciNetGoogle Scholar
  17. HS00.
    Huiszoon L.R. and Schellekens A.N. (2000). Crosscaps, Boundaries and T-Duality. Nucl. Phys. B 584(3): 705–718 zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. HSS99.
    Huiszoon L.R., Schellekens A.N. and Sousa N. (1999). Klein bottles and simple Currents. Phys. Lett. B 470(1): 95–102 zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. HSS02.
    Huiszoon L.R., Schalm K. and Schellekens A.N. (2002). Geometry of WZW orientifolds. Nucl. Phys. B 624(1–2): 219–252 zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. Jan95.
    Jandl E. (1995) Lechts und rinks. Munich, Luchterhand LiteraturverlagGoogle Scholar
  21. Mei02.
    Meinrenken E. (2002). The Basic Gerbe over a compact simple Lie Group. Enseign. Math., II. Sér. 49(3–4): 307–333 MathSciNetGoogle Scholar
  22. PSS95a.
    Pradisi G., Sagnotti A. and Stanev Y.S. (1995). The Open descendants of nondiagonal SU(2) WZW models. Phys. Lett. B 356: 230–238 CrossRefADSMathSciNetGoogle Scholar
  23. PSS95b.
    Pradisi G., Sagnotti A. and Stanev Y.S. (1995). Planar duality in SU(2) WZW models. Phys. Lett. B 354: 279–286 CrossRefADSMathSciNetGoogle Scholar
  24. SS03.
    Sousa N. and Schellekens A.N. (2003). Orientation matters for NIMreps. Nucl. Phys. B 653(3): 339–368 zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. Ste00.
    Stevenson, D.: The Geometry of Bundle Gerbes, PhD thesis, University of Adelaide, http://arxiv.org/list/math.DG/0004117, 2000Google Scholar
  26. Wit84.
    Witten E. (1984). Nonabelian Bosonization in two Dimensions. Commun. Math. Phys. 92: 455–472 zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Urs Schreiber
    • 1
  • Christoph Schweigert
    • 1
    Email author
  • Konrad Waldorf
    • 1
  1. 1.Fachbereich Mathematik, Schwerpunkt Algebra und ZahlentheorieUniversität HamburgHamburgGermany

Personalised recommendations