Advertisement

Communications in Mathematical Physics

, Volume 273, Issue 3, pp 705–754 | Cite as

Geometrical (2+1)-Gravity and the Chern-Simons Formulation: Grafting, Dehn Twists, Wilson Loop Observables and the Cosmological Constant

  • C. MeusburgerEmail author
Article

Abstract

We relate the geometrical and the Chern-Simons description of (2+1)-dimensional gravity for spacetimes of topology \({\mathbb{R}}\times S_g\) , where S g is an oriented two-surface of genus g > 1, for Lorentzian signature and general cosmological constant and the Euclidean case with negative cosmological constant. We show how the variables parametrising the phase space in the Chern-Simons formalism are obtained from the geometrical description and how the geometrical construction of (2+1)-spacetimes via grafting along closed, simple geodesics gives rise to transformations on the phase space. We demonstrate that these transformations are generated via the Poisson bracket by one of the two canonical Wilson loop observables associated to the geodesic, while the other acts as the Hamiltonian for infinitesimal Dehn twists. For spacetimes with Lorentzian signature, we discuss the role of the cosmological constant as a deformation parameter in the geometrical and the Chern-Simons formulation of the theory. In particular, we show that the Lie algebras of the Chern-Simons gauge groups can be identified with the (2+1)-dimensional Lorentz algebra over a commutative ring, characterised by a formal parameter ΘΛ whose square is minus the cosmological constant. In this framework, the Wilson loop observables that generate grafting and Dehn twists are obtained as the real and the ΘΛ-component of a Wilson loop observable with values in the ring, and the grafting transformations can be viewed as infinitesimal Dehn twists with the parameter ΘΛ.

Keywords

Gauge Group Cosmological Constant Wilson Loop Poisson Structure Dehn Twist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carlip S. (1998). Quantum gravity in 2+1 dimensions. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  2. 2.
    Carlip S. (2005). Quantum Gravity in 2+1 Dimensions: The Case of a Closed Universe. Living Rev.Rel. 8: 1 Google Scholar
  3. 3.
    Achucarro A. and Townsend P. (1986). A Chern–Simons action for three-dimensional anti-de Sitter supergravity theories. Phys. Lett. B 180: 85–100 MathSciNetADSGoogle Scholar
  4. 4.
    Witten, E.: 2+1 dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46–78 (1988), Nucl. Phys. B 339, 516–32 (1988)Google Scholar
  5. 5.
    Nelson J.E. and Regge T. (1989). Homotopy groups and (2+1)-dimensional quantum gravity. Nucl. Phys. B 328: 190–202 CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Nelson J.E. and Regge T. (1991). (2+1) Gravity for genus > 1. Commun. Math. Phys. 141: 211–23 CrossRefMathSciNetzbMATHADSGoogle Scholar
  7. 7.
    Nelson J.E. and Regge T. (1992). (2+1) Gravity for higher genus. Class Quant Grav. 9: 187–96 CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Nelson J.E. and Regge T. (1992). The mapping class group for genus 2. Int. J. Mod. Phys. B 6: 1847–1856 CrossRefMathSciNetzbMATHADSGoogle Scholar
  9. 9.
    Nelson J.E. and Regge T. (1993). Invariants of 2+1 quantum gravity. Commun. Math. Phys. 155: 561–568 CrossRefMathSciNetzbMATHADSGoogle Scholar
  10. 10.
    Ashtekar A., Husain V., Rovelli C., Samuel J. and Smolin L. (1989). (2+1) quantum gravity as a toy model for the (3+1) theory. Class. Quant. Grav. 6: L185–L193 CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Martin S.P. (1989). Observables in 2+1 dimensional gravity. Nucl. Phys. B 327: 178–204 CrossRefADSGoogle Scholar
  12. 12.
    Fock V.V. and Rosly A.A. (1999). Poisson structure on moduli of flat connections on Riemann surfaces and r-matrices. Am. Math. Soc. Transl. 191: 67–86 MathSciNetGoogle Scholar
  13. 13.
    Alekseev A.Y. and Malkin A.Z. (1995). Symplectic structure of the moduli space of flat connections on a Riemann surface. Commun. Math. Phys. 169: 99–119 CrossRefMathSciNetzbMATHADSGoogle Scholar
  14. 14.
    Meusburger C. and Schroers B.J. (2003). Poisson structure and symmetry in the Chern-Simons formulation of (2+1)-dimensional gravity. Class. Quant. Grav. 20: 2193–2234 CrossRefMathSciNetzbMATHADSGoogle Scholar
  15. 15.
    Alekseev A.Y., Grosse H. and Schomerus V. (1995). Combinatorial quantization of the Hamiltonian Chern-Simons Theory. Commun. Math. Phys. 172: 317–58 CrossRefMathSciNetzbMATHADSGoogle Scholar
  16. 16.
    Alekseev A.Y., Grosse H. and Schomerus V. (1995). Combinatorial quantization of the Hamiltonian Chern-Simons Theory II. Commun. Math. Phys. 174: 561–604 CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Buffenoir E., Noui K. and Roche P. (2002). Hamiltonian Quantization of Chern-Simons theory with \(SL(2,{\mathbb{C}})\) Group Class. Quant. Grav. 19: 4953–5016 CrossRefMathSciNetzbMATHADSGoogle Scholar
  18. 18.
    Meusburger C. and Schroers B.J. (2004). The quantisation of Poisson structures arising in Chern-Simons theory with gauge group \(G < imes {\mathfrak{g}}^*\) Adv. Theor. Math. Phys. 7: 1003–1043 MathSciNetzbMATHGoogle Scholar
  19. 19.
    Mess, G.: Lorentz spacetimes of constant curvature. Preprint IHES/M/90/28, Avril 1990Google Scholar
  20. 20.
    Benedetti R. and Guadgnini E. (2001). Cosmological time in (2+1)-gravity. Nucl. Phys. B 613: 330–352 CrossRefzbMATHADSGoogle Scholar
  21. 21.
    Benedetti, R., Bonsante, F.: Wick rotations in 3D gravity: \({\mathcal{ML}}(\mathbb{H}^{2})\) spacetimes. http://arxiv./org/list/math.DG/0412470, 2004Google Scholar
  22. 22.
    Benedetti, R., Bonsante, F.: Canonical Wick Rotations in 3-dimensional gravity. http://arxiv./org/list/math.DG/0508485, 2004Google Scholar
  23. 23.
    Meusburger C. (2006). Grafting and Poisson structure in (2+1)-gravity with vanishing cosmological constant. Commun. Math. Phys. 266: 735–775 CrossRefMathSciNetzbMATHADSGoogle Scholar
  24. 24.
    Benedetti R. and Petronio C. (1992). on Hyperbolic Geometry. Springer Verlag, Berlin-Heidelberg zbMATHGoogle Scholar
  25. 25.
    Katok S. (1992). Fuchsian Groups. The University of Chicago Press, Chicago zbMATHGoogle Scholar
  26. 26.
    Goldman W.M. (1987). Projective structures with Fuchsian holonomy. J. Diff. Geom. 25: 297–326 zbMATHGoogle Scholar
  27. 27.
    Hejhal D.A. (1975). Monodromy groups and linearly polymorphic functions. Acta. Math. 135: 1–55 CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Maskit B. (1969). On a class of Kleinian groups. Ann. Acad. Sci. Fenn. Ser. A 442: 1–8 MathSciNetGoogle Scholar
  29. 29.
    Thurston, W.P.: Geometry and Topology of Three-Manifolds. Lecture notes, Princeton, NJ: Princeton University, 1979Google Scholar
  30. 30.
    Thurston W.P. (1987). Earthquakes in two-dimensional hyperbolic geometry. In: Epstein, D.B. (eds) Low dimensional topology and Kleinian groups, pp 91–112. Cambridge University Press, Cambridge Google Scholar
  31. 31.
    McMullen C. (1998). Complex Earthquakes and Teichmüller theory. J. Amer. Math. Soc. 11: 283–320 CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Sharpe R.W. (1996). Differential Geometry. Springer Verlag, New York Google Scholar
  33. 33.
    Matschull H.-J. (1999). On the relation between (2+1) Einstein gravity and Chern-Simons Theory. Class. Quant. Grav. 16: 2599–609 CrossRefMathSciNetzbMATHADSGoogle Scholar
  34. 34.
    Meusburger C. (2006). Dual generators of the fundamental group and the moduli space of flat connections. J. Phys. A: Math. Gen. 39: 14781–14832 CrossRefMathSciNetzbMATHADSGoogle Scholar
  35. 35.
    Stachura P. (1998). Poisson-Lie structures on Poincaré and Euclidean groups in three dimensions. J. Phys. A 31: 4555–4564 CrossRefMathSciNetzbMATHADSGoogle Scholar
  36. 36.
    Goldman W.M. (1986). Invariant functions on Lie groups and Hamiltonian flows of surface group representations. Invent. Math. 85: 263–302 CrossRefMathSciNetzbMATHADSGoogle Scholar
  37. 37.
    Meusburger C. and Schroers B.J. (2005). Mapping class group actions in Chern-Simons theory with gauge group \(G < imes {\mathfrak{g}}^*\) Nucl. Phys. B 706: 569–597 CrossRefMathSciNetzbMATHADSGoogle Scholar
  38. 38.
    Bourbaki, N. (Pseud.): Elements of Mathematics, Lie groups and Lie algebras, Part I: Chapters 1–3. Paris, HermannGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations