Communications in Mathematical Physics

, Volume 273, Issue 1, pp 67–118 | Cite as

Functional Integral Construction of the Massive Thirring model: Verification of Axioms and Massless Limit



We present a complete construction of a Quantum Field Theory for the Massive Thirring model by following a functional integral approach. This is done by introducing an ultraviolet and an infrared cutoff and by proving that, if the “bare” parameters are suitably chosen, the Schwinger functions have a well defined limit satisfying the Osterwalder-Schrader axioms, when the cutoffs are removed. Our results, which are restricted to weak coupling, are uniform in the value of the mass. The control of the effective coupling (which is the main ingredient of the proof) is achieved by using the Ward Identities of the massless model, in the approximated form they take in the presence of the cutoffs. As a byproduct, we show that, when the cutoffs are removed, theWard Identities have anomalies which are not linear in the bare coupling. Moreover, we find for the interacting propagator of the massless theory a closed equation which is different from that usually stated in the physical literature.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AB.
    Adler S.L., Bardeen W.A. (1969). Absence of higher order corrections in the anomalous axial vector divergence equation. Phys. Rev. 182: 1517–1536 CrossRefADSGoogle Scholar
  2. AF.
    Akiyama A., Futami Y. (1992). Two-fermion-loop contribution to the axial anomaly in the massive Thirring model. Phys. Rev. D 46: 798–805 CrossRefADSGoogle Scholar
  3. BM1.
    Benfatto G., Mastropietro V. (2001). Renormalization group, hidden symmetries and approximate Ward identities in the xyz model. Rev. Math. Phys. 13: 1323–1435 MATHCrossRefMathSciNetGoogle Scholar
  4. BM2.
    Benfatto G., Mastropietro V. (2002). On the density–density critical indices in interacting Fermi systems. Commun. Math. Phys. 231: 97–134 MATHCrossRefADSMathSciNetGoogle Scholar
  5. BM3.
    Benfatto G., Mastropietro V. (2004). Ward identities and vanishing of the Beta function for d = 1 interacting Fermi systems. J. Stat. Phys. 115: 143–184 CrossRefMathSciNetMATHADSGoogle Scholar
  6. BM4.
    Benfatto G., Mastropietro V. (2005). Ward identities and chiral anomaly in the Luttinger liquid. Commun. Math. Phys. 258: 609–655 MATHCrossRefADSMathSciNetGoogle Scholar
  7. BT.
    Bergknoff H., Thacker H. (1979). Structure and solution of the massive Thirring model. Phys. Rev. D 19: 3666–3679 CrossRefADSMathSciNetGoogle Scholar
  8. C.
    Coleman S. (1975). Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D 11: 2088–2097 CrossRefADSGoogle Scholar
  9. CR.
    Cooper, A., Rosen, L.: The weakly coupled Yukawaz field theory: cluster expansion and Wightman axioms. Trans. Am. Math. Soc. 234, 1 (1977)Google Scholar
  10. CRW.
    Carey A.L., Ruijsenaars S.N.M., Wright J.D. (1985). The massless Thirring model: Positivity of Klaiber’s n-point functions. Commun. Math. Phys. 99: 347–364 CrossRefADSMathSciNetGoogle Scholar
  11. D.
    Dimock J. (1998). Bosonization of Massive Fermions. Commun. Math. Phys. 198: 247–281 MATHCrossRefADSMathSciNetGoogle Scholar
  12. DFZ.
    Dell’Antonio G., Frishman Y., Zwanziger D. (1972). Thirring Model in Terms of Currents: Solution and Light–Cone Expansions. Phys. Rev. D 6: 988–1007 CrossRefADSGoogle Scholar
  13. DR.
    Disertori M., Rivasseau V. (2000). Interacting Fermi Liquid in Two Dimensions at Finite Temperature. Commun. Math. Phys. 215: 251–290 MATHCrossRefADSMathSciNetGoogle Scholar
  14. FGS.
    Furuya K., Gamboa Saravi S., Schaposnik F.A. (1982). Path integral formulation of chiral invariant fermion models in two dimensions. Nucl. Phys. B 208: 159–181 CrossRefADSMathSciNetGoogle Scholar
  15. FMRS.
    Feldman J., Magnen J., Rivasseau V., Sénéor R. (1986). Massive Gross–Neveu Model: A renormalizable field theory: the massive Gross-Neveu model in two dimensions. Commun. Math. Phys. 103: 67–103 MATHCrossRefADSGoogle Scholar
  16. FS.
    Fröhlich J., Seiler E. (1976). The massive Thirring-Schwinger model (QED2): convergence of perturbation theory and particle structure. Helv. Phys. Acta 49: 889–924 MathSciNetGoogle Scholar
  17. G.
    Gallavotti G. (1985). Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods. Rev. Mod. Phys. 57: 471–562 CrossRefADSMathSciNetGoogle Scholar
  18. GK.
    Gawedzki K., Kupiainen A. (1985). Gross–Neveu model through convergent perturbation expansions. Commun. Math. Phys. 102: 1–30 CrossRefADSMathSciNetGoogle Scholar
  19. GL.
    Gomes M., Lowenstein J.H. (1972). Asymptotic scale invariance in a massive Thirring model. Nucl. Phys. B 45: 252–266 CrossRefADSGoogle Scholar
  20. GR.
    Georgi H., Rawls J.M. (1971). Anomalies of the Axial Vector Current in Two Dimensions. Phys. Rev. D 3: 874–879 CrossRefADSGoogle Scholar
  21. GiM.
    Giuliani A., Mastropietro V. (2005). Anomalous Universality in the anisctropic Ashkin-Teller model. Commun. Math. Phys. 256: 687–735 CrossRefMathSciNetADSGoogle Scholar
  22. J.
    Johnson K. (1961). Solution of the Equations for the Green’s Functions of a two Dimensional Relativistic Field Theory. Nuovo Cimento 20: 773–790 CrossRefGoogle Scholar
  23. K.
    Klaiber, B.: The Thirring model. In: Quantum theory and statistical physics, Vol X, A, Barut, A.O., Brittin, W.F., editors. London Gordon and Breach, 1968Google Scholar
  24. Le.
    Lesniewski A. (1987). Effective action for the Yukawa2 quantum field theory. Commun. Math. Phys. 108: 437–467 CrossRefADSMathSciNetGoogle Scholar
  25. M.
    Mastropietro, V., et al.: Scholar
  26. MM.
    Montvay I., Münster G. (1994). Quantum Fields on a Lattice. Cambridge University Press, Cambridge Google Scholar
  27. OS1.
    Osterwalder K., Schrader R. (1973). Axioms for Euclidean Green’s Functions. Commun. Math. Phys. 31: 83–112 MATHCrossRefADSMathSciNetGoogle Scholar
  28. OS2.
    Osterwalder K., Schrader R. (1975). Axioms for Euclidean Green’s Functions II. Commun. Math. Phys. 42: 281–305 MATHCrossRefADSMathSciNetGoogle Scholar
  29. OSe.
    Osterwalder K., Seiler E. (1978). Gauge Field Theories on a Lattice. Ann. Phys. 110: 440–471 CrossRefADSMathSciNetGoogle Scholar
  30. S.
    Seiler E. (1980). Phys. Rev. D 22: 2412–2418 CrossRefADSMathSciNetGoogle Scholar
  31. Sm.
    Smirnov F.A. (1992). “Form factors in completely integrable models of quantum field theory”. World Sci., Singapore Google Scholar
  32. SU.
    Seiler R., Uhlenbrock D.A. (1977). On the massive Thirring model. Ann. Physics 105: 81–110 CrossRefADSMathSciNetGoogle Scholar
  33. T.
    Thirring W. (1958). A soluble relativistic field theory. Ann. Phys. 3: 91–112 MATHCrossRefADSMathSciNetGoogle Scholar
  34. Wi.
    Wilson K.G. (1969). Non–Lagrangian Models of Current Algebra. Phys. Rev. 179: 1499–1512 CrossRefADSMathSciNetGoogle Scholar
  35. W.
    Wightman, A.S.: Cargese lectures, 1964, New York: Gorden and Beach,Google Scholar
  36. Z.
    Zamolodchikov Alexander B., Zamolodchikov Alexey B. (1979). Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models. Ann. Physics 120: 253–291 CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomaItaly

Personalised recommendations