Advertisement

Communications in Mathematical Physics

, Volume 272, Issue 3, pp 811–835 | Cite as

Parametric Representation of Noncommutative Field Theory

  • Razvan Gurau
  • Vincent Rivasseau
Article

Abstract

In this paper we investigate the Schwinger parametric representation for the Feynman amplitudes of the recently discovered renormalizable \({\phi^{4}_4}\) quantum field theory on the Moyal non commutative \({\mathbb R^{4}}\) space. This representation involves new hyperbolic polynomials which are the non-commutative analogs of the usual “Kirchoff” or “Symanzik” polynomials of commutative field theory, but contain richer topological information.

Keywords

Parametric Representation Dual Graph Power Counting Ribbon Graph External Argument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Douglas M., Nekrasov N. (2001). Noncommutative field theory. Rev. Mod. Phy. 73: 9771029 MathSciNetGoogle Scholar
  2. 2.
    Connes A., Douglas M.R., Schwarz A. (1998). Noncommutative Geometry and Matrix Theory: Compactification on Tori. JHEP 9802: 003 CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Seiberg N., Witten E. (1999). String theory and noncommutative geometry. JHEP 9909: 032 CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Susskind, L.: The Quantum Hall Fluid, Non-Commutative Chern Simons Theory http://arxiv.org/list/ hep-th/0101029, 2001Google Scholar
  5. 5.
    Gurau R., Magnen J., Rivasseau V., Vignes-Tourneret F. (2006). Renormalization of Non Commutative \({\Phi^4_4}\) Field Theory in Direct Space. Commun. Math. Phys. 267: 515–542 CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Grosse H., Wulkenhaar R. (2005). Power-counting theorem for non-local matrix models and renormalization. Commun. Math. Phys. 254: 91–127 MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Grosse H., Wulkenhaar R. (2005). Renormalization of \({\phi^4}\) -theory on noncommutative \({\mathbb{R}^4}\) in the matrix base. Commun. Math. Phys. 256: 305–374 MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Langmann E., Szabo R.J. (2002). Duality in scalar field theory on noncommutative phase spaces. Phys. Lett. B 533: 168 MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Rivasseau V., Vignes-Tourneret F., Wulkenhaar R. (2006). Renormalization of noncommutative phi 4-theory by multi-scale analysis. Commun. Math. Phys. 262: 565 MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Filk T. (1996). Divergencies in a field theory on quantum space. Phys. Lett. B 376: 53–58 CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Minwalla S., Van Raamsdonk M., Seiberg N. (2000). Noncommutative perturbative dynamics. JHEP 02: 020 CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Chepelev I., Roiban R. (2001). Convergence theorem for non-commutative Feynman graphs and renormalization. JHEP 0103: 001 CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Chepelev I., Roiban R. (2000). Renormalization of quantum field theories on noncommutative \({\mathbb{R}^d}\) , 1. Scalars. JHEP 0005, 037Google Scholar
  14. 14.
    Bergere M., Lam Y. (1976). Bogoliubov-Parasiuk Theorem in the α Parametric Representation. J. Math. Phys. 17: 1546 CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Kreimer D. (1998). On the Hopf algebra structure of perturbative quantum field theories. Adv. Theor. Math. Phys. 2: 303 MATHMathSciNetGoogle Scholar
  16. 16.
    Connes A., Kreimer D. (2000). Renormalization in quantum field theory and the Riemann Hilbert problem, I and II. Commun. Math. Phys. 210: 249 and 216–249 CrossRefMathSciNetGoogle Scholar
  17. 17.
    Connes, A., Marcolli, M.: From Physics to Number Theory via Non-Commutative Geometry Part II: Renormalization, the Riemann Hilbert correspondence and motivic Galois theory. In: Frontiers in Number Theory, Physics and Geometry Berlin Heidelberg-New York: Springer-Verlag, 2006, pp. 269–350Google Scholar
  18. 18.
    Abdelmalek A. (2004). Calculus and Theorems of the Matrix-Tree Type. Adv. in Applied Math. 33: 51–70 MATHCrossRefGoogle Scholar
  19. 19.
    Langmann E., Szabo R.J., Zarembo K. (2004). Exact solution of quantum field theory on noncommutative phase spaces. JHEP 0401: 017 CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Gurau, R., Rivasseau, V., Vignes-Tourneret, F.: Propagators for Noncommutative Field Theories to appear in Ann. Henri Poincaré, [arXiv:hep-th/0512071].Google Scholar
  21. 21.
    Vignes-Tourneret, F: Renormalization of the Orientable Non-commutative Gross-Neveu Model http://arXiv.org/list/math-ph/0606069, 2006 to appear in Annales Henri PoincaréGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, CNRS UMR 8627Université Paris XIOrsay CedexFrance

Personalised recommendations