Communications in Mathematical Physics

, Volume 273, Issue 3, pp 803–827 | Cite as

Obstructions to the Existence of Sasaki–Einstein Metrics

  • Jerome P. Gauntlett
  • Dario Martelli
  • James Sparks
  • Shing-Tung Yau
Article

Abstract

We describe two simple obstructions to the existence of Ricci-flat Kähler cone metrics on isolated Gorenstein singularities or, equivalently, to the existence of Sasaki-Einstein metrics on the links of these singularities. In particular, this also leads to new obstructions for Kähler–Einstein metrics on Fano orbifolds. We present several families of hypersurface singularities that are obstructed, including 3-fold and 4-fold singularities of ADE type that have been studied previously in the physics literature. We show that the AdS/CFT dual of one obstruction is that the R–charge of a gauge invariant chiral primary operator violates the unitarity bound.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maldacena, J. M.: “The large N limit of superconformal field theories and supergravity.” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)]Google Scholar
  2. 2.
    Kehagias A. (1998). “New type IIB vacua and their F-theory interpretation”. Phys. Lett. B 435: 337 CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Klebanov I.R., Witten E. (1998). “Superconformal field theory on threebranes at a Calabi-Yau singularity”. Nucl. Phys. B 536: 199 CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Acharya B.S., Figueroa-O’Farrill J.M., Hull C.M., Spence B. (1999). “Branes at conical singularities and holography”. Adv. Theor. Math. Phys. 2: 1249 MathSciNetGoogle Scholar
  5. 5.
    Morrison D.R., Plesser M.R. (1999). “Non-spherical horizons. I”. Adv. Theor. Math. Phys. 3: 1 MATHMathSciNetGoogle Scholar
  6. 6.
    Boyer, C.P., Galicki, K.: “Sasakian Geometry, Hypersurface Singularities, and Einstein Metrics.” Supplemento ai Rendiconti del Circolo Matematico di Palermo Serie II. Suppl 75, 57–87 (2005)Google Scholar
  7. 7.
    Matsushima Y. (1957). “Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kaehlérienne”. Nagoya Math. J. 11: 145–150 MATHMathSciNetGoogle Scholar
  8. 8.
    Futaki A. (1983). “An obstruction to the existence of Einstein Kähler metrics”. Invent. Math. 73: 437–443 MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Martelli, D., Sparks, J., Yau, S.-T.: “Sasaki–Einstein Manifolds and Volume Minimisation,” http://arxiv.org/list/hep-th/0603021Google Scholar
  10. 10.
    Martelli D., Sparks J. (2006). “Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals”. Commun. Math. Phys. 262: 51 MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Yau S.-T. (1993). “Open problems in Geometry”. Proc. Symp. Pure Math. 54: 1–28 Google Scholar
  12. 12.
    Donaldson S.K. (1999). “Symmetric spaces, Kähler geometry and Hamiltonian dynamics”. Amer. Math. Soc. Transl. 196: 13–33 MathSciNetGoogle Scholar
  13. 13.
    Martelli D., Sparks J., Yau S.-T. (2006). “The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds”. Commun. Math. Phys. 268: 39–65 MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Intriligator K., Wecht B. (2003). “The exact superconformal R-symmetry maximizes a”. Nucl. Phys. B 667: 183 MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Bishop, R.L., Crittenden, R.J.: “Geometry of manifolds.” New York: Academic Press, 1964Google Scholar
  16. 16.
    Besse, A.L.: “Einstein Manifolds.” Berlin-Heidelberg-New York: Springer–Verlag, 2nd edition, 1987Google Scholar
  17. 17.
    Lichnerowicz, A.: “Géometrie des groupes de transformations.” Paris: Dunod, 1958Google Scholar
  18. 18.
    Cachazo F., Fiol B., Intriligator K.A., Katz S., Vafa C. (2002). “A geometric unification of dualities”. Nucl. Phys. B 628: 3 MATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Conti, D.: “Cohomogeneity one Einstein-Sasaki 5-manifolds.” http://arxiv.org/list/math.DG/0606323, 2006Google Scholar
  20. 20.
    Gukov, S., Vafa, C., Witten, E.: “CFT’s from Calabi-Yau four-folds.” Nucl. Phys. B 584, 69 (2000) [Erratum-ibid. B 608, 477 (2001)]Google Scholar
  21. 21.
    Obata M. (1962). “Certain conditions for a Riemannian manifold to be isometric to a sphere”. J. Math. Soc. Japan 14: 333–340 MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Minakshisundaram S., Pleijel A. (1949). “Some Properties of the Eigenfunctions of the Laplace–Operator on Riemannian Manifolds”. Can. J. Math. 1: 242–256 MATHMathSciNetGoogle Scholar
  23. 23.
    Kollár, J.: “Rational Curves on Algebraic Varieties.” Berlin-Heidelberg-New York: Springer–Verlag. Ergebnisse der Math. Vol 32, 1996Google Scholar
  24. 24.
    Hwang J.-M. (2003). “On the degrees of Fano four-folds of Picard number 1”. J. Reine Angew. Math. 556: 225–235 MATHMathSciNetGoogle Scholar
  25. 25.
    Gubser S., Nekrasov N., Shatashvili S. (1999). “Generalized conifolds and four dimensional N = 1 superconformal theories”. JHEP 9905: 003 CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Gubser S.S., Klebanov I.R., Polyakov A.M. (1998). “Gauge theory correlators from non-critical string theory”. Phys. Lett. B 428: 105 CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Witten E. (1998). “Anti-de Sitter space and holography”. Adv. Theor. Math. Phys. 2: 253 MATHMathSciNetGoogle Scholar
  28. 28.
    Klebanov I.R., Witten E. (1999). “AdS/CFT correspondence and symmetry breaking”. Nucl. Phys. B 556: 89 MATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Balasubramanian V., Kraus P., Lawrence A.E. (1999). “Bulk vs. boundary dynamics in anti-de Sitter spacetime”. Phys. Rev. D 59: 046003 CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Ceresole A., Dall’Agata G., D’Auria R., Ferrara S. (2000). “Spectrum of type IIB supergravity on AdS(5) x T(11): Predictions on N = 1 SCFT’s”. Phys. Rev. D 61: 066001 CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Fabbri D., Fre P., Gualtieri L., Termonia P. (1999). “M-theory on AdS(4) x M(111): The complete Osp(2|4) x SU(3) x SU(2) spectrum from harmonic analysis”. Nucl. Phys. B 560: 617 MATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Fabbri D., Fre’ P., Gualtieri L., Reina C., Tomasiello A., Zaffaroni A., Zampa A. (2000). “3D superconformal theories from Sasakian seven-manifolds: New nontrivial evidences for AdS(4)/CFT(3)”. Nucl. Phys. B 577: 547 MATHCrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Kim H.J., Romans L.J., Nieuwenhuizen P. (1985). “The Mass Spectrum Of Chiral N=2 D = 10 Supergravity On S 5”. Phys. Rev. D 32: 389 CrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Castellani L., D’Auria R., Fre P., Pilch K., Nieuwenhuizen P. (1984). “The Bosonic Mass Formula For Freund-Rubin Solutions Of D = 11 Supergravity On General Coset Manifolds”. Class. Quant. Grav. 1: 339 CrossRefADSGoogle Scholar
  35. 35.
    D’Auria R., Fre P. (1985). “Universal Bose-Fermi Mass Relations In: Kaluza-Klein Supergravity And Harmonic Analysis On Coset Manifolds With Killing Spinors”. Annals Phys. 162: 372 CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Henningson M., Skenderis K. (1998). “The holographic Weyl anomaly”. JHEP 9807: 023 CrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Gubser S.S. (1999). “Einstein manifolds and conformal field theories”. Phys. Rev. D 59: 025006 CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    Gauntlett J.P., Martelli D., Sparks J., Waldram D. (2006). “Supersymmetric AdS(5) solutions of type IIB supergravity”. Class. Quant. Grav. 23: 4693 MATHCrossRefMathSciNetADSGoogle Scholar
  39. 39.
    Randell, R.C.: “The homology of generalized Brieskorn manifolds.” Topology 14, no. 4, 347–355 (1975)Google Scholar
  40. 40.
    Bergman, A., Herzog, C.P.: “The Volume of some Non-spherical Horizons and the AdS/CFT Correspondence.” JHEP 0201, 030 (2002)Google Scholar
  41. 41.
    Nekrasov N., Shadchin S. (2004). “ABCD of instantons”. Commun. Math. Phys. 252: 359 MATHCrossRefMathSciNetADSGoogle Scholar
  42. 42.
    Smith I., Thomas R.P. (2003). “Symplectic surgeries from singularities”. Turkish J. Math. 27: 231–250 MATHMathSciNetGoogle Scholar
  43. 43.
    Gauntlett J.P., Martelli D., Sparks J., Waldram D. (2004). “Sasaki-Einstein metrics on S 2 × S 3”. Adv. Theor. Math. Phys. 8: 711 MATHMathSciNetGoogle Scholar
  44. 44.
    Gauntlett J.P., Martelli D., Sparks J., Waldram D. (2004). “Supersymmetric AdS5 solutions of M-theory”. Class. Quant. Grav. 21: 4335 MATHCrossRefMathSciNetADSGoogle Scholar
  45. 45.
    Dancer A.S., Strachan I.A.B. (1994). “Kähler–Einstein metrics with SU(2) action”. Math. Proc. Camb. Phil. Soc. 115: 513 MATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Kollár J. (1989). “Flops”. Nagoya Math. J. 113: 15–36 MATHMathSciNetGoogle Scholar
  47. 47.
    Laufer, H.B.: “On \({\mathbb{CP}}^1\) as an exceptional set.” In: Recent developments in several complex variables, Tokyo/Princeton, NJ: Princeton University Press and University of Tokyo Press, 1981Google Scholar
  48. 48.
    Corrado R., Halmagyi N. (2005). “N = 1 field theories and fluxes in IIB string theory”. Phys. Rev. D 71: 046001 CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jerome P. Gauntlett
    • 1
    • 2
  • Dario Martelli
    • 3
  • James Sparks
    • 4
    • 5
  • Shing-Tung Yau
    • 4
  1. 1.Blackett LaboratoryImperial CollegeLondonU.K.
  2. 2.The Institute for Mathematical SciencesImperial CollegeLondonU.K.
  3. 3.Department of PhysicsCERN Theory UnitGeneva 23Switzerland
  4. 4.Department of MathematicsHarvard UniversityCambridgeU.S.A.
  5. 5.Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.

Personalised recommendations