Advertisement

Communications in Mathematical Physics

, Volume 271, Issue 3, pp 635–647 | Cite as

On Two-Dimensional Sonic-Subsonic Flow

  • Gui-Qiang Chen
  • Constantine M. Dafermos
  • Marshall Slemrod
  • Dehua Wang
Article

Abstract

A compensated compactness framework is established for sonic-subsonic approximate solutions to the two-dimensional Euler equations for steady irrotational flows that may contain stagnation points. Only crude estimates are required for establishing compactness. It follows that the set of subsonic irrotational solutions to the Euler equations is compact; thus flows with sonic points over an obstacle, such as an airfoil, may be realized as limits of sequences of strictly subsonic flows. Furthermore, sonic-subsonic flows may be constructed from approximate solutions. The compactness framework is then extended to self-similar solutions of the Euler equations for unsteady irrotational flows.

Keywords

Weak Solution Euler Equation Stagnation Point Young Measure National Science Foundation Grant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball, J.M. A version of the fundamental theorem for Young measures. Lecture Notes in Phys. 344, Berlin: Springer, 1989, pp. 207–215Google Scholar
  2. 2.
    Bers L. (1954). Results and conjectures in the mathematical theory of subsonic and transonic gas flows. Comm. Pure Appl. Math. 7: 79–104 zbMATHMathSciNetGoogle Scholar
  3. 3.
    Bers L. (1954). Existence and uniqueness of a subsonic flow past a given profile. Comm. Pure Appl. Math. 7: 441–504 zbMATHMathSciNetGoogle Scholar
  4. 4.
    Bers L. (1958). Mathematical Aspects of Subsonic and Transonic Gas Dynamics. Chapman & Hall, Ltd., New York, John Wiley & Sons, Inc., London zbMATHGoogle Scholar
  5. 5.
    Chen, G.-Q.: Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III). Acta Math. Sci. 6, 75–120 (1986) (in English); 8, 243–276 (1988) (in Chinese)Google Scholar
  6. 6.
    Chen, G.-Q.: Compactness Methods and Nonlinear Hyperbolic Conservation Laws. AMS/IP Stud. Adv. Math. 15, Providence, RI: AMS, 2000, pp. 33–75Google Scholar
  7. 7.
    Chen, G.-Q.: Euler Equations and Related Hyperbolic Conservation Laws. In: Handbook of Differential Equations, Vol. 2, edited by C. M. Dafermos, E. Feireisl, Amsterdam: Elsevier Science B.V, pp. 1–104Google Scholar
  8. 8.
    Chen G.-Q. and Frid H. (1999). Divergence-measure fields and hyperbolic conservation laws. Arch. Rational Mech. Anal. 147: 89–118 zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Chen, G.-Q., LeFloch, Ph.: Compressible Euler equations with general pressure law. Arch. Rational Mech. Anal. 153, 221–259 (2000); Existence theory for the isentropic Euler equations. Arch. Rational Mech. Anal. 166, 81–98 (2003)Google Scholar
  10. 10.
    Courant R. and Friedrichs K.O. (1962). Supersonic Flow and Shock Waves. Springer-Verlag, New York Google Scholar
  11. 11.
    Dafermos C.M. (2005). Hyperbolic Conservation Laws in Continuum Physics. Springer-Verlag, Berlin zbMATHGoogle Scholar
  12. 12.
    Ding, X., Chen, G.-Q., Luo, P.: Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (I)–(II). Acta Math. Sci. 5, 483–500, 501–540 (1985) (in English); 7, 467–480 (1987), 8, 61–94 (1988) (in Chinese)Google Scholar
  13. 13.
    DiPerna R.J. (1983). Convergence of viscosity method for isentropic gas dynamics. Commun. Math. Phys. 91: 1–30 zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    DiPerna R.J. (1983). Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82: 27–70 zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    DiPerna R.J. (1985). Compensated compactness and general systems of conservation laws. Trans. Amer. Math. Soc. 292: 383–420 CrossRefMathSciNetGoogle Scholar
  16. 16.
    Dong, G.-C.: Nonlinear Partial Differential Equations of Second Order. Translations of Mathematical Monographs, 95, Providence, RI: American Mathematical Society, 1991Google Scholar
  17. 17.
    Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS-RCSM, 74, Providence, RI: AMS, 1990Google Scholar
  18. 18.
    Finn, R.: On the flow of a perfect fluid through a polygonal nozzle, I, II. Proc. Nat. Acad. Sci. USA. 40, 983–985, 985–987 (1954)Google Scholar
  19. 19.
    Finn R. (1954). On a problem of type, with application to elliptic partial differential equations. J. Rational Mech. Anal. 3: 789–799 MathSciNetGoogle Scholar
  20. 20.
    Finn R. and Gilbarg D. (1957). Asymptotic behavior and uniquenes of plane subsonic flows. Comm. Pure Appl. Math. 10: 23–63 zbMATHMathSciNetGoogle Scholar
  21. 21.
    Finn R. and Gilbarg D. (1957). Three-dimensional subsonic flows and asymptotic estimates for elliptic partial differential equations. Acta Math. 98: 265–296 zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Finn R. and Gilbarg D. (1958). Uniqueness and the force formulas for plane subsonic flows. Trans. Amer. Math. Soc. 88: 375–379 zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Gilbarg D. (1953). Comparison methods in the theory of subsonic flows. J. Rational Mech. Anal. 2: 233–251 MathSciNetGoogle Scholar
  24. 24.
    Gilbarg D. and Serrin J. (1955). Uniqueness of axially symmetric subsonic flow past a finite body. J. Rational Mech. Anal. 4: 169–175 MathSciNetGoogle Scholar
  25. 25.
    Gilbarg D. and Shiffman M. (1954). On bodies achieving extreme values of the critical Mach number. I. J. Rational Mech Anal. 3: 209–230 MathSciNetGoogle Scholar
  26. 26.
    Lax P.D. (1973). Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM, Philadelphia zbMATHGoogle Scholar
  27. 27.
    Lions P.-L., Perthame B. and Souganidis P. (1996). Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm. Pure Appl. Math. 49: 599–638 zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Lions P.-L., Perthame B. and Tadmor E. (1994). Kinetic formulation of the isentropic gas dynamics and p-systems. Commun. Math. Phys. 163: 169–172 CrossRefMathSciNetGoogle Scholar
  29. 29.
    Morawetz C.S. (1982). The mathematical approach to the sonic barrier. Bull Amer. Math. Soc. (N.S.) 6: 127–145 zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Morawetz C.S. (1985). On a weak solution for a transonic flow problem. Comm. Pure Appl. Math. 38: 797–818 zbMATHMathSciNetGoogle Scholar
  31. 31.
    Morawetz C.S. (1995). On steady transonic flow by compensated compactness. Methods Appl. Anal. 2: 257–268 zbMATHMathSciNetGoogle Scholar
  32. 32.
    Morawetz C.S. (2004). Mixed equations and transonic flow. J. Hyper. Diff. Eqs. 1: 1–26 zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Murat F. (1978). Compacite par compensation. Ann. Suola Norm. Pisa (4) 5: 489–507 zbMATHMathSciNetGoogle Scholar
  34. 34.
    Serre, D.: Systems of Conservation Laws, Vols. 1–2, Cambridge: Cambridge University Press, 1999, 2000Google Scholar
  35. 35.
    Shiffman M. (1952). On the existence of subsonic flows of a compressible fluid. J. Rational Mech. Anal. 1: 605–652 MathSciNetGoogle Scholar
  36. 36.
    Tartar L.: Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics, Heriot-Watt Symposium IV, Res. Notes in Math. 39, Boston-London: Pitman, 1979, pp. 136–212Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Gui-Qiang Chen
    • 1
  • Constantine M. Dafermos
    • 2
  • Marshall Slemrod
    • 3
  • Dehua Wang
    • 4
  1. 1.Department of MathematicsNorthwestern UniversityEvanstonUSA
  2. 2.Division of Applied MathematicsBrown UniversityProvidenceUSA
  3. 3.Department of MathematicsUniversity of WisconsinMadisonUSA
  4. 4.Department of MathematicsUniversity of PittsburghPittsburghUSA

Personalised recommendations