Communications in Mathematical Physics

, Volume 271, Issue 3, pp 681–697 | Cite as

Mean-Field- and Classical Limit of Many-Body Schrödinger Dynamics for Bosons



We present a new proof of the convergence of the N −particle Schrödinger dynamics for bosons towards the dynamics generated by the Hartree equation in the mean-field limit. For a restricted class of two-body interactions, we obtain convergence estimates uniform in \({\hbar}\) , up to an exponentially small remainder. For \({\hbar = 0}\) , the classical dynamics in the mean-field limit is given by the Vlasov equation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BGM.
    Bardos C., Golse F. and Mauser N. (2000). Weak coupling limit of the N-particle Schrödinger equation. Methods Appl. Anal. 2: 275–293 MathSciNetGoogle Scholar
  2. BEGMY.
    Bardos C., Erdös L., Golse F., Mauser N. and Yau H-T. (2002). Derivation of the Schrödinger-Poisson equation from the quantum N-body problem. C.R. Acad. Sci. Paris 334: 515–520 MATHGoogle Scholar
  3. BGP.
    Bambusi D., Graffi S. and Paul T. (1999). Normal Forms Estimates and Quantization Formulae. Commun. Math. Phys. 207: 173–195 MATHCrossRefADSMathSciNetGoogle Scholar
  4. BH.
    Braun W. and Hepp K. (1977). The Vlasov Dynamics and Its Fluctuations in the 1/N Limit of Interacting Classical Particles. Commun. Math. Phys. 56: 101–113 CrossRefADSMathSciNetGoogle Scholar
  5. Do.
    Dobrushin R. L. (1979). Vlasov equations. Sov. J. Funct. An. 13: 115–119 Google Scholar
  6. EESY.
    Elgart A., Erdös L., Schlein B. and Yau H.-T. (2004). Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. 83: 1241–1273 MATHMathSciNetGoogle Scholar
  7. EY.
    Erdos L. and Yau H.-T. (2001). Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5: 1169–2005 MathSciNetGoogle Scholar
  8. Fo.
    Folland G. (1989). Harmonic Analysis in Phase Space. Princeton University Press, Princeton, NJ MATHGoogle Scholar
  9. GMP.
    Graffi S., Martinez A. and Pulvirenti M. (2003). Mean field approximation of quantum systems and classical limit. Math. Meth. Models in Appl. Sci. 13: 55–63 MathSciNetGoogle Scholar
  10. GiVe.
    Ginibre J. and Velo G. (1980). On a class of nonlinear Schrödinger equations with nonlocal interaction. Math. Z. 170: 109–136 MATHCrossRefMathSciNetGoogle Scholar
  11. He.
    Hepp K. (1974). The classical limit for quantum mechanical correlation functions. Commun. Math. Phys 35: 265–267 CrossRefADSMathSciNetGoogle Scholar
  12. LP.
    Lions P. L. and Paul T. (1993). Sur les mesures de Wigner. Revista Matematica Ibero Americana 9: 553–618 Google Scholar
  13. NS.
    Narnhofer H. and Sewell G. (1981). Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79: 9–24 CrossRefADSMathSciNetGoogle Scholar
  14. Ro.
    Robert D. (1987). Autour de l’approximation semiclassique. Birkhäuser Verlag, Basel Google Scholar
  15. Sp1.
    Spohn H. (1980). Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 53: 569–615 CrossRefADSMathSciNetGoogle Scholar
  16. Sp2.
    Spohn H. (1981). On the Vlasov hierarchy. Math. Meth. Models in Appl. Sci. 3: 445–455 MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Theoretische PhysikETH ZürichZürichSwitzerland
  2. 2.Dipartimento di MatematicaUniversità di BolognaBolognaItaly

Personalised recommendations