Advertisement

Communications in Mathematical Physics

, Volume 272, Issue 1, pp 119–138 | Cite as

Generalized Inverse Mean Curvature Flows in Spacetime

  • Hubert Bray
  • Sean Hayward
  • Marc Mars
  • Walter Simon
Article

Abstract

Motivated by the conjectured Penrose inequality and by the work of Hawking, Geroch, Huisken and Ilmanen in the null and the Riemannian case, we examine necessary conditions on flows of two-surfaces in spacetime under which the Hawking quasilocal mass is monotone. We focus on a subclass of such flows which we call uniformly expanding, which can be considered for null as well as for spacelike directions. In the null case, local existence of the flow is guaranteed. In the spacelike case, the uniformly expanding condition leaves a 1-parameter freedom, but for the whole family, the embedding functions satisfy a forward-backward parabolic system for which local existence does not hold in general. Nevertheless, we have obtained a generalization of the weak (distributional) formulation of this class of flows, generalizing the corresponding step of Huisken and Ilmanen’s proof of the Riemannian Penrose inequality.

Keywords

Curvature Flow Generalize Inverse Local Existence Curvature Vector Curvature Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Penrose R. (1973). Naked singularities. Ann. N. Y. Acad. Sci. 224: 125 CrossRefADSGoogle Scholar
  2. 2.
    Gibbons, G.W.: Some comments on gravitational entropy and the inverse mean curvature flow. Class. Quantum Grav. 16, 1677 (1999); Chruściel, P.T., Simon, W. Towards the classification of static vacuum spacetimes with negative cosmological constant. J. Math. Phys. 42, 1779 (2001)Google Scholar
  3. 3.
    Horowitz, G.: The positive energy theorem and its extensions. In: Asymptotic behavior of mass and spacetime geometry, edited by F. Flaherty, Springer Lecture Notes in Physics 202, New York: Springer, 1984Google Scholar
  4. 4.
    Karkowski J. and Malec E. (2005). The general Penrose inquality: lessons from numerical evidence. Acta Physica Polonica B36: 59 ADSMathSciNetGoogle Scholar
  5. 5.
    Ben-Dov I. (2004). The Penrose inequality and apparent horizons. Phys. Rev. D 70: 124031 CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Hayward S.A. (1994). Quasi-localization of Bondi-Sachs energy-loss. Class. Quantum Grav. 11: 3037 zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Malec E. and ÓMurchadha N. (1994). Trapped surfaces and the Penrose inequality in spherically symmetric geometries. Phys. Rev. D 49: 6931 CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Hayward S.A. (1996). Gravitational energy in spherical symmetry. Phys. Rev. D 53: 1938 CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Huisken G. and Ilmanen T. (2001). The inverse mean curvature flow and the Riemannian Penrose inequality. J. Diff. Geom. 59: 353 zbMATHMathSciNetGoogle Scholar
  10. 10.
    Bray H. (2001). Proof of the Riemannian Penrose inequality using the Positive Mass Theorem. J. Diff. Geom. 59: 177 zbMATHMathSciNetGoogle Scholar
  11. 11.
    Geroch R. (1973). Energy Extraction. Ann. N. Y. Acad. Sci. 224: 108 CrossRefADSGoogle Scholar
  12. 12.
    Jang P.S. and Wald R. (1977). The positive energy conjecture and the cosmic censorship. J. Math. Phys. 18: 41 CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Hawking S.W. (1968). Gravitational radiation in an expanding universe. J. Math. Phys. 9: 598 CrossRefGoogle Scholar
  14. 14.
    Hayward S.A. (1998). Inequalities relating area, energy, surface gravity and charge of black holes. Phys. Rev. Lett. 81: 4557 zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Eardley D.M.: Global problems in numerical relativity. In: Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, Smarr, L.L., ed., Cambridge: Cambridge University Press, 1979, 127Google Scholar
  16. 16.
    Malec E., Mars M. and Simon W. (2002). On the Penrose inequality for general horizons. Phys. Rev. Lett. 88: 121102 CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Frauendiener J. (2001). On the Penrose inequality. Phys. Rev. Lett. 87: 101101–1 CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Christodoulou D. and Klainerman S. (1993). The global nonlinear stability of Minkowski space. Princeton University Press, Princeton, NJ zbMATHGoogle Scholar
  19. 19.
    Klainerman S. and Nicoló F. (2003). The evolution problem in General Relativity. Birkhäuser, Boston zbMATHGoogle Scholar
  20. 20.
    Christodoulou, D.: Mathematical problems of General Relativity Theory. Zürich lectures in advanced mathematics, EMS publishing house (to appear)Google Scholar
  21. 21.
    Jost J. (2001). Riemannian Geometry and geometric analysis. 3rd ed., Berlin, SpringerGoogle Scholar
  22. 22.
    Senovilla J.M.M. (2000). Super-energy tensors. Class. Quantum Grav. 17: 2799 zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Hayward S.A. (2006). Gravitational radiation from dynamical black holes. Class. Quantum Grav. 23: L15 zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Hayward S.A. (2004). Energy conservation for dynamical black holes. Phys. Rev. Lett. 93: 251101 CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Hayward S.A. (2003). Spatial and null infinity via advanced and retarded conformal factors. Phys. Rev. D 68: 104015 CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Malec, E., Mars, M., Simon, W.: On the Penrose inequality. In: Lobo A. et. al. (eds). Proceedings of the Spanish Relativity Meeting. Universitat de Barcelona, (2002) p. 253Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Hubert Bray
    • 1
  • Sean Hayward
    • 2
    • 3
  • Marc Mars
    • 4
  • Walter Simon
    • 4
  1. 1.Mathematics DepartmentDuke UniversityDurhamUSA
  2. 2.Center for AstrophysicsShanghai Normal UniversityShanghaiChina
  3. 3.Center for Mathematical PhysicsEast China University of Science and TechnologyShanghaiChina
  4. 4.Facultad de CienciasUniversidad de SalamancaSalamancaSpain

Personalised recommendations