Communications in Mathematical Physics

, Volume 271, Issue 3, pp 577–589 | Cite as

The Classification of Static Electro–Vacuum Space–Times Containing an Asymptotically Flat Spacelike Hypersurface with Compact Interior

  • Piotr T. ChruścielEmail author
  • Paul Tod


We show that static electro–vacuum black hole space–times containing an asymptotically flat spacelike hypersurface with compact interior and with both degenerate and non–degenerate components of the event horizon do not exist. This is done by a careful study of the near-horizon geometry of degenerate horizons, which allows us to eliminate the last restriction of the static electro-vacuum no-hair theory.


Black Hole Scalar Curvature Event Horizon Spacelike Hypersurface Geodesic Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chruściel P.T. (1999). The classification of static vacuum space–times containing an asymptotically flat spacelike hypersurface with compact interior. Class. Quantum Grav. 16: 661–687 gr-qc/9809088 CrossRefADSGoogle Scholar
  2. 2.
    Chruściel P.T. (1999). Towards the classification of static electro–vacuum space–times containing an asymptotically flat spacelike hypersurface with compact interior. Class. Quantum Grav. 16: 689–704 gr-qc/9810022 CrossRefADSGoogle Scholar
  3. 3.
    Chruściel P.T. and Nadirashvili N.S. (1995). All electrovacuum Majumdar–Papapetrou spacetimes withnon–singular black holes. Class. Quantum Grav. 12: L17–L23 gr-qc/9412044 CrossRefGoogle Scholar
  4. 4.
    Chruściel P.T., Reall H.S. and Tod K.P. (2005). On non-existence of static vacuum black holes with degenerate components of the event horizon. Class. Quantum Grav. 23: 549–554 gr-qc/0512041 CrossRefADSGoogle Scholar
  5. 5.
    Gilbarg D., Trudinger N.: Elliptic partial differential equations of second order 2nd ed., Berlin-Heidelberg-New York, Springer Verlag, 1977Google Scholar
  6. 6.
    Hartle J.B. and Hawking S.W. (1972). Solutions of the Einstein–Maxwell equations with many black holes. Commun. Math. Phys. 26: 87–101 CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Heusler M. (1994). On the uniqueness of the Reissner–Nordström solution with electric and magnetic charge. Class. Quantum Grav. 11: L49–L53 CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Heusler M. (1997). On the uniqueness of the Papapetrou–Majumdar metric. Class. Quantum Grav. 14: L129–L134 gr-qc/9607001 CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Israel W. (1968). Event horizons in static electrovac space-times. Commun. Math. Phys. 8: 245–260 CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Kramer D., Stephani H., MacCallum M., Herlt E.: Exact solutions of Einstein’s field equations. Cambridge: Cambridge University Press, 1980Google Scholar
  11. 11.
    Lewandowski J. and Pawłowski T. (2003). Extremal isolated horizons: A local uniqueness theorem. Class. Quantum Grav. 20: 587–606 gr-qc/0208032zbMATHCrossRefADSGoogle Scholar
  12. 12.
    Masood–ul–Alam A.K.M. (1992). Uniqueness proof of static charged black holes revisited. Class. Quantum Grav. 9: L53–L55 zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Newman E.T., Tod K.P.: Asymptotically flat space–times. In: General Relativity and Gravitation, Held, A. ed., New York and London: Plenum 1980, pp. 1–36Google Scholar
  14. 14.
    Reall, H.S.: Higher dimensional black holes and supersymmetry. Phys. Rev. D 68, 024024 (2003), hep-th/0211290Google Scholar
  15. 15.
    Ruback P. (1988). A new uniqueness theorem for charged black holes. Class. Quantum Grav. 5: L155–L159 CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Simon W. (1992). Radiative Einstein-Maxwell spacetimes and ‘no–hair’ theorems. Class. Quantum Grav. 9: 241–256 zbMATHCrossRefADSGoogle Scholar
  17. 17.
    Stewart J.: Advanced general relativity. Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge University Press 1990Google Scholar
  18. 18.
    Véron L.: Singularities of solutions of second order quasilinear equations. Pitman Research Notes in Mathematics Series, Vol. 353, Harlow: Longman 1996Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.LMPTFédération Denis PoissonToursFrance
  2. 2.Mathematical Institute and St John’s CollegeOxford UniversityOxfordUnited Kingdom

Personalised recommendations