Communications in Mathematical Physics

, Volume 265, Issue 1, pp 119–130 | Cite as

Lieb-Robinson Bounds and the Exponential Clustering Theorem

  • Bruno NachtergaeleEmail author
  • Robert Sims


We give a Lieb-Robinson bound for the group velocity of a large class of discrete quantum systems which can be used to prove that a non-vanishing spectral gap implies exponential clustering in the ground state of such systems.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fredenhagen, K.: A Remark on the Cluster Theorem. Commun. Math. Phys. 97, 461–463 (1985)CrossRefADSzbMATHMathSciNetGoogle Scholar
  2. 2.
    Nachtergaele, B.: The spectral gap for some quantum spin chains with discrete symmetry breaking. Commun. Math. Phys. 175, 565–606 (1996)CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. 3.
    Dhar, D.: Lattices of effectively nonintegral dimensionality. J. Math. Phys. 18, 577–585 (1977)CrossRefADSGoogle Scholar
  4. 4.
    Tasaki, H.: Critical phenomena in fractal spin systems. J. Phys. A: Math. Gen. 20, 4521–4529 (1987)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Koma, T., Tasaki, H.: Classical XY model in 1.99 dimensions. Phys. Rev. Lett. 74, 3916–3919 (1995)Google Scholar
  6. 6.
    Koma, T.: Spectral Gap and Decay of Correlations in U(1)-Symmetric Lattice Systems in Dimensions D<2. (, 2005
  7. 7.
    Albert, A., Barabási, A.-L.: Statistical Mechanics of Complex Networks. Rev. Mod. Phys. 74, 47–97 (2002)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Hastings, M.B.: Mean-field and anomolous behavior on a small-world network. Phys. Rev. Lett. 91, 098701 (2003)CrossRefADSGoogle Scholar
  9. 9.
    Wreszinski, W.F.: Charges and Symmetries in Quantum Theories without Locality. Fortschr. Phys. 35, 379–413 (1987)MathSciNetGoogle Scholar
  10. 10.
    Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. (N.Y.) 16, 407–466 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Hastings, M.B.: Lieb-Schultz-Mattis in Higher Dimensions. Phys. Rev. B 69, 104431 (2004)CrossRefADSGoogle Scholar
  12. 12.
    Hastings, M.B.: Locality in Quantum and Markov Dynamics on Lattices and Networks. Phys. Rev. Lett. 93, 140402 (2004)CrossRefADSGoogle Scholar
  13. 13.
    Lieb, E.H., Robinson, D.W.: The Finite Group Velocity of Quantum Spin Systems. Commun. Math. Phys. 28, 251–257 (1972)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 1. 2nd edn., Berlin-Heidelberg-New York: Springer Verlag, 1987Google Scholar
  15. 15.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 2. 2nd edn., Berlin-Heiderberg-New York: Springer Verlag, 1997Google Scholar
  16. 16.
    Simon, B.: The Statistical Mechanics of Lattice Gases, Volume I. Princeton, NJ: Princeton University Press, 1993Google Scholar
  17. 17.
    Hastings, M.B., Koma, T.: Spectral Gap and Exponential Decay of Correlations., 2005

Copyright information

© B. Nachtergaele and R. Sims 2006

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California at DavisDavisUSA

Personalised recommendations