Communications in Mathematical Physics

, Volume 264, Issue 2, pp 317–334 | Cite as

On Computational Complexity of Siegel Julia Sets

  • I. Binder
  • M. Braverman
  • M. Yampolsky
Article

Abstract

It has been previously shown by two of the authors that some polynomial Julia sets are algorithmically impossible to draw with arbitrary magnification. On the other hand, for a large class of examples the problem of drawing a picture has polynomial complexity. In this paper we demonstrate the existence of computable quadratic Julia sets whose computational complexity is arbitrarily high.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlfors, L.: Complex Analysis. New York: McGraw-Hill, (1953)Google Scholar
  2. 2.
    Binder, I., Braverman, M., Yampolsky, M.: Filled Julia sets with empty interior are computable. http://arxiv/org/list/math.DS/0410580, 2004
  3. 3.
    Bishop, E., Bridges, D.S.: Constructive Analysis. Springer-Verlag, Berlin (1985)Google Scholar
  4. 4.
    Braverman, M.: Computational Complexity of Euclidean Sets: Hyperbolic Julia Sets are Poly-Time Computable. Thesis, University of Toronto, 2004, and Proc. CCA 2004, in ENTCS, Vol. 120, 17–30 (2005)Google Scholar
  5. 5.
    Braverman, M.: Parabolic Julia Sets are Polynomial Time Computable. http://arxiv.org/list/math.DS/0505036, 2005
  6. 6.
    Braverman, M., Yampolsky, M.: Non-computable Julia sets. J. Amer. Math. Soc., to appearGoogle Scholar
  7. 7.
    Brjuno, A.D.: Analytic forms of differential equations. Trans. Mosc. Math. Soc. 25, 131–288 (1971)MathSciNetGoogle Scholar
  8. 8.
    Buff, X., Chéritat, A.: The Yoccoz Function Continuously Estimates the Size of Siegel Disks. Annals of Math., to appearGoogle Scholar
  9. 9.
    de Faria, E., de Melo, W.: Rigidity of critical circle mappings I. J. Eur. Math. Soc. (JEMS) 4(1), 339–392 (1999)Google Scholar
  10. 10.
    Douady, A.: Disques de Siegel et anneax de Herman. Sem. Bourbaki, Astérisque, 152-153, 151–172 (1987)Google Scholar
  11. 11.
    Douady, A.: Does a Julia set depend continuously on the polynomial? In: Complex dynamical systems: The mathematics behind the Mandelbrot set and Julia sets. ed. Devaney, R.L. Proc. of Symposia in Applied Math., Vol. 49, Providence RI: Amer. Math. Soc. 1994, pp. 91–138Google Scholar
  12. 12.
    Marmi, S., Moussa, P., Yoccoz, J.-C.: The Brjuno functions and their regularity properties. Commun. Math. Phys. 186, 265–293 (1997)CrossRefADSMATHMathSciNetGoogle Scholar
  13. 13.
    McMullen, C.T.: Self-similarity of Siegel disks and Hausdorff dimension of Julia sets. Acta Math. 180(2), 247–292 (1998)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Milnor, J.: Dynamics in one complex variable. Introductory lectures. Braunschweig: Friedr. Vieweg & Sohn, 1999Google Scholar
  15. 15.
    Pommerenke, C.: Boundary behavior of conformal maps. Springer-Verlag, Berlin Heidelberg New York (1992)Google Scholar
  16. 16.
    Rettinger, R., Weihrauch, K.: The Computational Complexity of Some Julia Sets. In: STOC'03, June 9-11, 2003, San Diego, California, New York: ACM Press, 2004, pp. 177–185Google Scholar
  17. 17.
    Rettinger, R.: A Fast Algorithm for Julia Sets of Hyperbolic Rational Functions. Proc. of CCA 2004, in ENTCS, Vol. 120, 145–157 (2005)Google Scholar
  18. 18.
    Rohde, S., Zinsmeister, M.: Variation of the conformal radius. J. Anal. Math. 92, 105–115 (2004)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Siegel, C.: Iteration of analytic functions. Ann. of Math. (2) 43, 607–612 (1942)Google Scholar
  20. 20.
    Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)Google Scholar
  21. 21.
    Yampolsky, M., Zakeri, S.: Mating Siegel quadratic polynomials, J. Amer. Math. Soc. 14, 25–78 (2000)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Yoccoz, J.-C.: Petits diviseurs en dimension 1. S.M.F., Astérisque 231 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • I. Binder
    • 1
  • M. Braverman
    • 1
  • M. Yampolsky
    • 1
  1. 1.Departments of Mathematics and Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations