Communications in Mathematical Physics

, Volume 264, Issue 2, pp 465–503 | Cite as

Decay of Solutions of the Wave Equation in the Kerr Geometry



We consider the Cauchy problem for the massless scalar wave equation in the Kerr geometry for smooth initial data compactly supported outside the event horizon. We prove that the solutions decay in time in Lloc. The proof is based on a representation of the solution as an infinite sum over the angular momentum modes, each of which is an integral of the energy variable ω on the real line. This integral representation involves solutions of the radial and angular ODEs which arise in the separation of variables.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cardoso, V., Yoshida, S.: Superradiant instabilities of rotating black branes and strings. JHEP 0507, 009 (2005)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Chandrasekhar, S.: The mathematical theory of black holes. Oxford: Oxford University Press, 1983Google Scholar
  3. 3.
    De Alfaro, V., Regge, T.: Potential Scattering. Amsterdam: North-Holland Publishing Company, 1965Google Scholar
  4. 4.
    Finster, F., Kamran, N., Smoller, J., Yau, S.T.: The long-time dynamics of Dirac particles in the Kerr-Newman black hole geometry. Adv. Theor. Math. Phys. 7, 25–52 (2003)MathSciNetGoogle Scholar
  5. 5.
    Finster, F., Kamran, N., Smoller, J., Yau, S.T.: An integral spectral representation of the propagator for the wave equation in the Kerr geometry, Commun. Math. Phys. 260, no.2, 257–298 (2005)Google Scholar
  6. 6.
    Finster, F., Schmid, H.: Spectral estimates and non-selfadjoint perturbations of spheroidal wave operators. to appear in Grelle's Journal (2006)
  7. 7.
    Kay, B., Wald, R.: Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation 2-sphere. Classical Quantum Gravity 4, 893–898 (1987)CrossRefADSMATHMathSciNetGoogle Scholar
  8. 8.
    Press, W.H., Teukolsky, S.A.: Perturbations of a rotating black hole. II. Dynamical stability of the Kerr metric. Astrophys.J. 185, 649 (1973)Google Scholar
  9. 9.
    Price, R.H.: Nonspherical perturbations of relativistic gravitational collapse I, scalar and gravitational perturbations. Phys. Rev. D (3) 5, 2419–2438 (1972)Google Scholar
  10. 10.
    Whiting, B.: Mode stability of the Kerr black hole. J. Math. Phys 30, 1301–1305 (1989)CrossRefADSMATHMathSciNetGoogle Scholar
  11. 11.
    Regge, T., Wheeler, J.A.: Stability of the Schwarzschild singularity. Phys. Rev. (2) 108, 1063–1069 (1957)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.NWF I – MathematikUniversität RegensburgRegensburgGermany
  2. 2.Department of Math. and StatisticsMcGill UniversityMontréalCanada
  3. 3.Mathematics DepartmentThe University of MichiganAnn ArborUSA
  4. 4.Mathematics DepartmentHarvard UniversityCambridgeUSA

Personalised recommendations