Communications in Mathematical Physics

, Volume 271, Issue 2, pp 511–522 | Cite as

Persistence Properties and Unique Continuation of Solutions of the Camassa-Holm Equation

  • A. Alexandrou Himonas
  • Gerard Misiołek
  • Gustavo Ponce
  • Yong Zhou


It is shown that a strong solution of the Camassa-Holm equation, initially decaying exponentially together with its spacial derivative, must be identically equal to zero if it also decays exponentially at a later time. In particular, a strong solution of the Cauchy problem with compact initial profile can not be compactly supported at any later time unless it is the zero solution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BSS.
    Beals R., Sattinger D. and Szmigielski J. (2000). Multipeakons and the classical moment problem. Adv. Math. 154(2): 229–257 MATHCrossRefMathSciNetGoogle Scholar
  2. CH.
    Camassa R. and Holm D. (1993). An integrable shallow water equation with peaked solutions. Phys. Rev. Lett. 71: 1661–1664 MATHCrossRefADSMathSciNetGoogle Scholar
  3. Co.
    Constantin A. (2005). Finite propagation speed for the Camassa-Holm equation. J. Math. Phys. 46(2): 4 CrossRefMathSciNetGoogle Scholar
  4. CoE.
    Constantin A. and Escher J. (1998). Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26(2): 303–328 MATHMathSciNetGoogle Scholar
  5. CoMc.
    Constantin A. and McKean H. (1999). A shallow water equation on the circle. Comm. Pure Appl. Math. 52: 949–982 CrossRefMathSciNetGoogle Scholar
  6. CoS.
    Constantin A. and Strauss W. (2000). Stability of peakons. Comm. Pure Appl. Math. 53: 603–610 MATHCrossRefMathSciNetGoogle Scholar
  7. D.
    Danchin R. (2001). A few remarks on the Camassa-Holm equation. Differ. Int. Eqs. 14: 953–988 MATHMathSciNetGoogle Scholar
  8. DKT.
    De Lellis, C., Kappeler, T., Topalov, P.: Low-regularity solutions of the periodic Camassa-Holm equation. Comm. Partial Differential Equations (to appear) (2007)Google Scholar
  9. EKPV1.
    Escauriaza L., Kenig C.E., Ponce G. and Vega L. (2006). On unique continuation of solutions of Schrödinger equations. Comm. PDE 31: 1811–1823 MATHMathSciNetCrossRefGoogle Scholar
  10. EKPV2.
    Escauriaza, L., Kenig, C. E., Ponce, G., Vega, L.: On uniqueness properties of solutions of the k-generalized KdV equations. J. Funct. Anal. (to appear) (2006)Google Scholar
  11. FF.
    Fuchssteiner B. and Fokas A. (1981/1982). Symplectic structures, their Backlund transformations and hereditary symmetries. Phys. D 4: 47–66 CrossRefADSMathSciNetGoogle Scholar
  12. F.
    Fuchssteiner B. (1996). Some tricks from the symmetry-toolbox for nonlinear equations: generalization of the Camassa-Holm equation. Physica D 95: 229–243 MATHCrossRefMathSciNetGoogle Scholar
  13. He.
    Henry D. (2005). Compactly supported solutions of the Camassa-Holm equation. J. Nonlinear Math. Phys. 12: 342–347 MATHCrossRefMathSciNetGoogle Scholar
  14. HM1.
    Himonas A. and Misiołek G. (2001). The Cauchy problem for an integrable shallow water equation. Differ. Int. Eqs. 14: 821–831 MATHGoogle Scholar
  15. HM2.
    Himonas A. and Misiołek G. (2005). High-frequency smooth solutions and well-posedness of the Camassa-Holm equation. Int. Math. Res. Not. 51: 3135–3151 CrossRefGoogle Scholar
  16. LO.
    Li Y. and Olver P. (2000). Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Eqs. 162: 27–63 MATHCrossRefMathSciNetGoogle Scholar
  17. Mc1.
    McKean H. (2004). Breakdown of the Camassa-Holm equation. Comm. Pure Appl. Math. 57: 416–418 MATHCrossRefMathSciNetGoogle Scholar
  18. Mc2.
    McKean H. (1998). Breakdown of a shallow water equation. Asian J. Math. 2: 767–774 MathSciNetGoogle Scholar
  19. Mi.
    Misiołek G. (2002). Classical solutions of the periodic Camassa-Holm equation. Geom. Funct. Anal. 12: 1080–1104 CrossRefMathSciNetMATHGoogle Scholar
  20. Mo.
    Molinet L. (2004). On well-posedness results for the Camassa-Holm equation on the line: A survey. J. Nonlin. Math. Phys. 11: 521–533 MATHCrossRefMathSciNetGoogle Scholar
  21. R.
    Rodriguez-Blanco G. (2001). On the Cauchy problem for the Camassa-Holm equation. Nonlinear Anal. 46: 309–327 MATHCrossRefMathSciNetGoogle Scholar
  22. Z.
    Zhou, Y.: Infinite propagation speed for a shallow water equation. Preprint, available at, 2005Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. Alexandrou Himonas
    • 1
  • Gerard Misiołek
    • 1
  • Gustavo Ponce
    • 2
  • Yong Zhou
    • 3
    • 4
  1. 1.Department of MathematicsUniversity of Notre DameNotre DameUSA
  2. 2.Department of MathematicsUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Department of MathematicsEast China Normal UniversityShangaiChina
  4. 4.Institute des Hautes Éudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations