Communications in Mathematical Physics

, Volume 270, Issue 1, pp 69–108 | Cite as

Superselection Sectors and General Covariance. I

  • Romeo Brunetti
  • Giuseppe RuzziEmail author


This paper is devoted to the analysis of charged superselection sectors in the framework of the locally covariant quantum field theories. We shall analyze sharply localizable charges, and use net-cohomology of J.E. Roberts as a main tool. We show that to any 4-dimensional globally hyperbolic spacetime a unique, up to equivalence, symmetric tensor \({\mathrm{C}^*}\) -category with conjugates (in case of finite statistics) is attached; to any embedding between different spacetimes, the corresponding categories can be embedded, contravariantly, in such a way that all the charged quantum numbers of sectors are preserved. This entails that to any spacetime is associated a unique gauge group, up to isomorphisms, and that to any embedding between two spacetimes there corresponds a group morphism between the related gauge groups. This form of covariance between sectors also brings to light the issue whether local and global sectors are the same. We conjecture this holds that at least on simply connected spacetimes. It is argued that the possible failure might be related to the presence of topological charges. Our analysis seems to describe theories which have a well defined short-distance asymptotic behaviour.


Gauge Group Symmetric Tensor General Covariance Isometric Embedding Local Observable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashtekar A., Sen A. (1980) On the role of space-time topology in quantum phenomena: superselection of charge and emergence of nontrivial vacua. J. Math. Phys. 21, 526–533CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Baumgärtel H., Lledó F. (2004) Duality of compact groups and Hilbert \({\mathrm{C}^*}\) -systems for \({\mathrm{C}^*}\) -algebras with nontrivial center. Internat. J. Math. 15, 759–812CrossRefMathSciNetGoogle Scholar
  3. 3.
    Beem J.K., Ehrlich P.E., Easley K.L. (1996) Global Lorentzian geometry 2nd edition. New York, Marcel Dekker, Inc.,zbMATHGoogle Scholar
  4. 4.
    Bernal A.N., Sánchez M. (2003) On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461–470CrossRefADSGoogle Scholar
  5. 5.
    Bernal A.N., Sánchez M. (2005) Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50CrossRefADSGoogle Scholar
  6. 6.
    Bernal, A.N., Sánchez, M.: A note on the extendability of compact hypersurfaces to smooth Cauchy hypersurfaces., 2005Google Scholar
  7. 7.
    Borchers H.J. (1965) Local rings and the connection of spin with statistics. Commun. Math. Phys. 1, 281–307CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Brunetti, R.: Locally covariant quantum field theories. “Rigorous Quantum Field Theory. A Festschrift for Jacques Bros.” Progress in Mathematics, vol. 251, Birkhauser (2006)Google Scholar
  9. 9.
    Brunetti R., Fredenhagen K. (2000) Microlocal analysis and quantum field theory: Renormalization on physical backgrounds. Commun. Math. Phys. 208, 623–661CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Brunetti, R., Fredenhagen, K.: Algebraic Quantum Field Theory. In: Francoise, J.-P., Naber, G., Tsun, T.S. (eds.) Encyclopedia of Mathematical Physics. Elsevier (2006)Google Scholar
  11. 11.
    Brunetti, R., Fredenhagen, K.: Towards a background independent formulation of perturbative quantum gravity. To appear in the Proceedings of the Workshop on “Mathematical and Physical Aspects of Quantum Gravity”, held in Blaubeuren 28/7-01/08, 2005. (2006)Google Scholar
  12. 12.
    Brunetti R., Fredenhagen K., Köhler M. (1996) The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633–652CrossRefADSGoogle Scholar
  13. 13.
    Brunetti R., Fredenhagen K., Verch R. (2003) The generally covariant locality principle – A new paradigm for local quantum physics. Commun. Math. Phys. 237, 31–68ADSMathSciNetGoogle Scholar
  14. 14.
    Brunetti, R., Ruzzi, G.: Superselection sectors and general covariance II. In preparationGoogle Scholar
  15. 15.
    Buchholz D., Doplicher S., Longo R., Roberts J.E. (1992) A new look at Goldstone’s theorem. Rev. Math. Phys. Special Issue, 49–83MathSciNetGoogle Scholar
  16. 16.
    Buchholz D. (1982) The physical state space of quantum electrodynamics. Commun. Math. Phys. 85, 49–71CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Buchholz D., Fredenhagen K. (1982) Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Ciolli, F.: Massless scalar free Field in 1+1 dimensions II: Net Cohomology and Completeness of Superselection Sectors. In preparationGoogle Scholar
  19. 19.
    Conti R., Doplicher S., Roberts J.E. (2001) Superselection theory for subsystems. Commun. Math. Phys. 218(2): 263–281CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    D’Antoni C., Morsella G., Verch R. (2005) Scaling algebras for charged fields and short-distance analysis for localizable and topological charges. Ann. Henri Poincaré 5, 809–870CrossRefMathSciNetGoogle Scholar
  21. 21.
    Doplicher S., Haag R., Roberts J.E. (1971) Local observables and particle statistics I. Commun. Math. Phys. 23, 199–230CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Doplicher S., Haag R., Roberts J.E. (1974) Local observables and particle statistics II. Commun. Math Phys. 35, 49–85CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Doplicher S., Longo R. (1984) Standard and split inclusions of von Neumann algebras. Invent. Math. 35, 493–536CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Doplicher S., Roberts J.E. (1989) A new duality theory for compact groups. Invent. Math. 98(1): 157–218CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Doplicher S., Roberts J.E. (1990) Why there is a field algebra with a compact gauge group describing the superselection sectors in particle physics. Commun. Math. Phys. 131(1): 51–107CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Dütsch M., Fredenhagen K. (2004) Causal perturbation theory in terms of retarded products and, and a proof of the action Ward identity. Rev. Math. Phys. 16(10):1291–1348CrossRefMathSciNetGoogle Scholar
  27. 27.
    Ellis G.F.R., Hawking S.W. (1973) The large scale structure of space-time. Cambridge, Cambridge University PresszbMATHGoogle Scholar
  28. 28.
    Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras. II: Geometric aspects and conformal invariance. Rev. Math Phys. Special Issue, 113–157 (1992)Google Scholar
  29. 29.
    Friedman J.L., Schleich K., Witt D.M. (1993) Topological censorship. Phys. Rev. Lett. 71, 1486–1489CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Fuller R.W., Wheeler J.A. (1962) Causality and multiply connected space-time. Phys. Rev. 128(2): 919–929CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Guido D., Longo R., Roberts J.E., Verch R. (2001) Charged sectors, spin and statistics in quantum field theory on curved spacetimes. Rev. Math. Phys. 13(2): 125–198CrossRefMathSciNetGoogle Scholar
  32. 32.
    Haag R. (1996) Local Quantum Physics. 2nd edition Springer Texts and Monographs in Physics. Berlin- Heidelberg-New York, SpringerGoogle Scholar
  33. 33.
    Haag R., Kastler D. (1964) An algebraic approach to quantum field theory. J. Math. Phys. 5, 848–861CrossRefMathSciNetGoogle Scholar
  34. 34.
    Hollands S., Wald R.M. (2001) Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289–326CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Kastler, D., Mebkhout, M., Rehren, K-H.: Introduction to the algebraic theory of superselection sectors. Space-time dimension = 2 – Strictly localizable morphisms. In: The algebraic theory of superselection sectors, D. Kastler (ed.) (Palermo 1989), River Edge, NJ: World Sci. Publishing, 1990, pp. 113–214Google Scholar
  36. 36.
    Kawahigashi Y., Longo R. (2004) Classification of local conformal nets. Case c < 1. Ann. of Math. 160(2): 493–522Google Scholar
  37. 37.
    Longo R., Roberts J.E. (1997) A theory of dimension. K-Theory 11(2): 103–159CrossRefMathSciNetGoogle Scholar
  38. 38.
    Mac Lane S. (1971) Categories for the working mathematician. New York Heidelberg-Berlin, Springer VerlagzbMATHGoogle Scholar
  39. 39.
    Müger M. (1998) The superselection structure of massive quantum field theories in 1 + 1 dimensions. Rev. Math. Phys. 10, 1147–1170CrossRefMathSciNetGoogle Scholar
  40. 40.
    Müger M. (2003) Frobenius algebras in and Morita equivalence of tensor categories I. J. Pure Appl. Alg. 180, 81–157CrossRefGoogle Scholar
  41. 41.
    O’Neill B. (1983) Semi–Riemannian geometry. New York, Academic PresszbMATHGoogle Scholar
  42. 42.
    Porrmann M. (2004) Particle weights and their disintegration I. Commun. Math. Phys. 248, 269–304ADSMathSciNetGoogle Scholar
  43. 43.
    Porrmann M. (2004) Particle weights and their disintegration II. Commun. Math. Phys. 248, 305–333ADSMathSciNetGoogle Scholar
  44. 44.
    Roberts J.E. (1976) Local cohomology and superselection structure. Commun. Math. Phys 51(2): 107–119CrossRefADSGoogle Scholar
  45. 45.
    Roberts, J.E.: Lectures on algebraic quantum field theory. In: The algebraic theory of superselection sectors, D. Kastler (ed.) (Palermo 1989), River Edge, NJ: World Sci. Publishing, 1990, pp 1–112Google Scholar
  46. 46.
    Roberts, J.E.: More lectures in algebraic quantum field theory. In: Noncommutative geometry edited by S. Doplicher, R. Longo, C.I.M.E. Lectures, Martina Franca, Italy, 2000. Berlin-Heidelberg-New York: Springer, 2003Google Scholar
  47. 47.
    Roberts, J.E., Ruzzi, G.: A cohomological description of connections and curvature over posets. http://, 2006Google Scholar
  48. 48.
    Ruzzi G. (2003) Essential properties of the vacuum sector for a theory of superselection sectors. Rev. Math. Phys. 15(10):1255–1283CrossRefMathSciNetGoogle Scholar
  49. 49.
    Ruzzi G. (2005) Punctured Haag duality in locally covariant quantum field theories. Commun. Math. Phys. 256, 621–634CrossRefADSMathSciNetGoogle Scholar
  50. 50.
    Ruzzi G. (2005) Homotopy of posets, net-cohomology, and theory of superselection sectors in globally hyperbolic spacetimes. Rev. Math. Phys. 17(9): 1021–1070CrossRefMathSciNetGoogle Scholar
  51. 51.
    Sorkin R. (1979) The quantum electromagnetic field in multiply connected space. J. Phys. A 12, 403–421CrossRefADSMathSciNetGoogle Scholar
  52. 52.
    Vasselli E. (2003) Continuous Fields of \({\mathrm{C}^*}\) -algebras arising from extensions of tensor \({\mathrm{C}^*}\) -categories. J. Funct. Anal. 199, 123–153CrossRefMathSciNetGoogle Scholar
  53. 53.
    Verch R. (1997) Continuity of symplectically adjoint maps and the algebraic structure of Hadamard vacuum representations for quantum fields in curved spacetime. Rev. Math. Phys. 9(5): 635–674CrossRefMathSciNetGoogle Scholar
  54. 54.
    Verch, R.: Notes on regular diamonds., Preprint, available as ps-file at http://www/ Scholar
  55. 55.
    Verch R. (2001) A spin-statistics theorem for quantum fields on curved spacetimes manifolds in a generally covariant framework. Commun. Math. Phys. 223: 261CrossRefADSMathSciNetGoogle Scholar
  56. 56.
    Verch, R.: Stability Properties of Quantum Fields on Curved Spacetimes. Habilitation Thesis, University of Göttingen, March 2003Google Scholar
  57. 57.
    Wald R.M. (1984) General Relativity. Chicago, University of Chicago PresszbMATHGoogle Scholar
  58. 58.
    Wick G.C., Wightman A.S., Wigner E.P. (1952) The intrinsic parity of elementary particles. Phys. Rev. 88, 101–105CrossRefADSMathSciNetGoogle Scholar
  59. 59.
    Witt D.M. (1986) Vacuum space-times that admit no maximal slice. Phys. Rev. Lett. 57, 1386–1389CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.II Institute für Theoretische PhysikUniversität HamburgHamburgGermany
  2. 2.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomaItaly

Personalised recommendations