Advertisement

Communications in Mathematical Physics

, Volume 269, Issue 2, pp 533–543 | Cite as

Entropy Production in Gaussian Thermostats

  • Nurlan S. Dairbekov
  • Gabriel P. PaternainEmail author
Article

Abstract

We show that an arbitrary Anosov Gaussian thermostat on a surface is dissipative unless the external field has a global potential. This result is obtained by studying the cohomological equation of more general thermostats using the methods in [3].

Keywords

Entropy Production Volume Form Closed Orbit Constant Negative Curvature Nonequilibrium Statistical Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonetto F., Gentile G., Mastropietro V. (2000) Electric fields on a surface of constant negative curvature. Ergod. Th. Dynam. Sys. 20, 681–696zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Croke C.B., Sharafutdinov V.A. (1998) Spectral rigidity of a negatively curved manifold. Topology 37, 1265–1273zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Dairbekov N.S., Paternain G.P. (2005) Longitudinal KAM-cocycles and action spectra of magnetic flows. Math. Res. Lett. 12, 719–730zbMATHMathSciNetGoogle Scholar
  4. 4.
    Dairbekov N.S., Sharafutdinov V.A. (2003) Some problems of integral geometry on Anosov manifolds. Ergod. Th. Dynam. Sys. 23, 59–74zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Gallavotti G. (1995) Reversible Anosov diffeomorphisms and large deviations. Math. Phys. Electronic J. 1, 1–12zbMATHMathSciNetGoogle Scholar
  6. 6.
    Gallavotti G. (1999) New methods in nonequilibrium gases and fluids. Open Sys. Inf. Dynam. 6, 101–136zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Gallavotti G., Cohen E.G.D. (1995) Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697CrossRefADSGoogle Scholar
  8. 8.
    Gallavotti G., Cohen E.G.D. (1995) Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970zbMATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Gallavotti G., Ruelle D. (1997) SRB states and nonequilibrium statistical mechanics close to equilibrium. Commun. Math. Phys. 190, 279–281zbMATHMathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Gentile G. (1998) Large deviation rule for Anosov flows. Forum Math. 10, 89–118zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Ghys E. (1984) Flots d’Anosov sur les 3-variétés fibrées en cercles. Ergod. Th. Dynam. Sys. 4, 67–80zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Guillemin V., Kazhdan D. (1980) Some inverse spectral results for negatively curved 2-manifolds. Topology 19, 301–312zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Hoover W.G. (1986) Molecular Dynamics, Lecture Notes in Phys 258. Berlin Heidelberg New York, SpringerGoogle Scholar
  14. 14.
    Katok A., Hasselblatt B. (1995) Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications 54. Cambridge, Cambridge University PressGoogle Scholar
  15. 15.
    de la Llave R., Marco J.M., Moriyon R. (1986) Canonical perturbation theory of Anosov systems and regularity for the Livsic cohomology equation. Ann. Math. 123, 537–611zbMATHCrossRefGoogle Scholar
  16. 16.
    Lopes A.O., Thieullen P. (2005) Sub-actions for Anosov flows. Ergod. Th. Dynam. Sys. 25, 605–628zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Paternain G.P. (1999) Geodesic flows. Progress in Mathematics 180. Basel-Boston, BirkäuserGoogle Scholar
  18. 18.
    Paternain G.P. (2005) The longitudinal KAM-cocycle of a magnetic flow. Math. Proc. Camb. Phil. Soc. 139, 307–316zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Pollicott M., Sharp R. (2004) Livsic theorems, maximising measures and the stable norm. Dyn. Sys.: An Int. J. 19, 75–88zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Ruelle D. (1996) Positivity of entropy production in nonequilibrium statistical mechanics. J. Stat. Phys. 85, 1–23zbMATHMathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Ruelle D. (1999) Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393–468zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Wojtkowski M.P. (2000) Magnetic flows and Gaussian thermostats on manifolds of negative curvature. Fund. Math. 163, 177–191zbMATHMathSciNetGoogle Scholar
  23. 23.
    Wojtkowski M.P. (2000) W-flows on Weyl manifolds and Gaussian thermostats. J. Math. Pures Appl. 79, 953–974zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Wojtkowski, M.P.: Weyl manifolds and Gaussian thermostats. Proceedings of the International Congress of Mathematicians, Beijing 2002, Vol. III, pp. 511–523 China: Higher Ed. Press/ world Scientific (2002)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Kazakh British Technical UniversityAlmatyKazakhstan
  2. 2.Department of Pure Mathematics and Mathematical StatisticsUniversity of CambridgeCambridgeEngland

Personalised recommendations