Communications in Mathematical Physics

, Volume 266, Issue 3, pp 631–645 | Cite as

A Stochastic Perturbation of Inviscid Flows

  • Gautam IyerEmail author


We prove existence and regularity of the stochastic flows used in the stochastic Lagrangian formulation of the incompressible Navier-Stokes equations (with periodic boundary conditions), and consequently obtain a C k local existence result for the Navier-Stokes equations. Our estimates are independent of viscosity, allowing us to consider the inviscid limit. We show that as ν   → 0, solutions of the stochastic Lagrangian formulation (with periodic boundary conditions) converge to solutions of the Euler equations at the rate of \(O(\sqrt{\nu t})\).


Euler Equation Local Existence Inviscid Flow Stochastic Perturbation Weber Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bhattacharya R.N., Chen L., Dobson S., Guenther R.B., Orum C., Ossiander M., Thomann E., Waymire E.C. (2003). Majorizing kernels and stochastic cascades with applications to incompressible Navier-Stokes equations. Trans. Amer. Math. Soc. 355(12): 5003–5040, (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Busnello, B., Flandoli, F., Romito, M., A probabilistic representation for the vorticity of a 3D viscous fluid and for general systems of parabolic equations., 2003Google Scholar
  3. 3.
    Chorin A., Marsden J. (2000). A Mathematical Introduction to Fluid Mechanics. Springer, Berlin Heidelberg New YorkGoogle Scholar
  4. 4.
    Constantin P. (2001). An Eulerian-Lagrangian approach for incompressible fluids: local theory. J. Amer. Math. Soc. 14(2): 263–278, (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Constantin P. (2001). An Eulerian-Lagrangian Approach to the Navier-Stokes equations. Commun. Math. Phys. 216(3): 663–686zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Constantin P., Foias C. (1988). Navier-Stokes Equations. University of Chicago Press, Chicago, ILzbMATHGoogle Scholar
  7. 7.
    Constantin, P., Iyer, G.: A stochastic Lagrangian representation of the 3-dimensional incompressible Navier-Stokes equations., 2005Google Scholar
  8. 8.
    Friedman A. (1975). Stochastic Differential Equations and Applications, Volume 1. Academic Press, London-New York-San DiegoGoogle Scholar
  9. 9.
    Gomes D.A. (2005). A variational formulation for the Navier-Stokes equation. Commun. Math. Phys 257: 227–234zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Jourdain, B., Le Bris, C., Lelièvre, T.: Coupling PDEs and SDEs: the Illustrative Example of the Multiscale Simulation of Viscoelastic Flows. Lecture Notes in Computational Science and Engineering 44, Berlin Heidelberg New York: Springer, 2005, pp. 151–170Google Scholar
  11. 11.
    Karatzas I., Shreve S. (1991). Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics 113. Springer, New YorkzbMATHGoogle Scholar
  12. 12.
    Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Hölder Spaces. Graduate Studies in Mathematics 12, Providence, RI: Amer. Math. Soc, 1996Google Scholar
  13. 13.
    Kunita H. (1997). Stochastic flows and stochastic differential equations. Cambridge Studies in Advanced Mathematics 24. Cambridge University Press, CambridgezbMATHGoogle Scholar
  14. 14.
    Le Gall, J.: Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics, Basel-Baston: Birkhäuser, 1999Google Scholar
  15. 15.
    Le Jan Y., Sznitman A.S. (1997). Stochastic cascades and 3-dimensional Navier-Stokes equations. Probab. Theory Related Fields 109(3): 343–366zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Majda A., Bertozzi A. (2002). Vorticity and Incompressible Flow. Cambridge University Press, CambridgezbMATHGoogle Scholar
  17. 17.
    Stein E. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, NJzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations