Advertisement

Communications in Mathematical Physics

, Volume 266, Issue 3, pp 735–775 | Cite as

Grafting and Poisson Structure in (2+1)-Gravity with Vanishing Cosmological Constant

  • C. Meusburger
Article

Abstract

We relate the geometrical construction of (2+1)-spacetimes via grafting to phase space and Poisson structure in the Chern-Simons formulation of (2+1)-dimensional gravity with vanishing cosmological constant on manifolds of topology \(\mathbb{R} \times S_g\), where S g is an orientable two-surface of genus g>1. We show how grafting along simple closed geodesics λ is implemented in the Chern-Simons formalism and derive explicit expressions for its action on the holonomies of general closed curves on S g .We prove that this action is generated via the Poisson bracket by a gauge invariant observable associated to the holonomy of λ. We deduce a symmetry relation between the Poisson brackets of observables associated to the Lorentz and translational components of the holonomies of general closed curves on S g and discuss its physical interpretation. Finally, we relate the action of grafting on the phase space to the action of Dehn twists and show that grafting can be viewed as a Dehn twist with a formal parameter θ satisfying θ2 = 0.

Keywords

Gauge Group Fundamental Group Poisson Bracket Poisson Structure Mapping Class Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achucarro A., Townsend P. (1986). A Chern–Simons action for three-dimensional anti-de Sitter supergravity theories. Phys. Lett. B 180:85–100ADSMathSciNetGoogle Scholar
  2. 2.
    Witten, E.: 2+1 dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46–78 (1988), Nucl. Phys. B 339, 516–32 (1988)Google Scholar
  3. 3.
    Nelson J.E., Regge T. (1989). Homotopy groups and (2+1)-dimensional quantum gravity. Nucl. Phys. B 328:190–202CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Nelson J.E., Regge T. (1991). (2+1) Gravity for genus >1. Commun .Math. Phys. 141:211–23zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Nelson J.E., Regge T. (1992). (2+1) Gravity for higher genus. Class Quant Grav. 9:187–96CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Nelson J.E., Regge T. (1992). The mapping class group for genus 2. Int. J. Mod. Phys. B6:1847–1856zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Nelson J.E., Regge T. (1993). Invariants of 2+1 quantum gravity. Commun. Math. Phys. 155:561–568zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Martin S.P. (1989). Observables in 2+1 dimensional gravity. Nucl. Phys. B 327:178–204CrossRefADSGoogle Scholar
  9. 9.
    Ashtekar A., Husain V., Rovelli C., Samuel J., Smolin L. (1989). (2+1) quantum gravity as a toy model for the (3+1) theory. Class. Quant. Grav. 6:L185–L193CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Carlip S. (1998). Quantum gravity in 2+1 dimensions. Cambridge University Press, CambridgezbMATHGoogle Scholar
  11. 11.
    Mess, G.: Lorentz spacetimes of constant curvature. preprint IHES/M/90/28, Avril 1990Google Scholar
  12. 12.
    Benedetti R., Guadgnini E. (2001). Cosmological time in (2+1)-gravity. Nucl. Phys. B 613:330–352zbMATHCrossRefADSGoogle Scholar
  13. 13.
    Benedetti, R., Bonsante, F.: Wick rotations in 3D gravity: \(\mathcal{ML}(\mathbb{H}^{2})\) spacetimes. http://arxiv.org/list/ math.DG/0412470, 2004Google Scholar
  14. 14.
    Meusburger C., Schroers B.J. (2003). Poisson structure and symmetry in the Chern-Simons formulation of (2+1)-dimensional gravity. Class. Quant. Grav.20:2193–2234zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Meusburger C., Schroers B.J. (2004). The quantisation of Poisson structures arising in Chern-Simons theory with gauge group \(G \ltimes \mathfrak{g}^*\). Adv. Theor. Math. Phys. 7:1003–1043zbMATHMathSciNetGoogle Scholar
  16. 16.
    Meusburger C., Schroers B.J. (2005). Mapping class group actions in Chern-Simons theory with gauge group \(G\ltimes \mathfrak{g}^*\). Nucl. Phys. B 706:569-597zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Grigore D.R. (1996). The projective unitary irreducible representations of the Poincaré group in 1+2 dimensions. J. Math. Phys. 37:460–473zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Mund J., Schrader R. (1995). Hilbert spaces for Nonrelativistic and Relativistic "Free" Plektons (Particles with Braid Group Statistics). In: Albeverio S., Figari R., Orlandi E., Teta A. (eds.) Proceeding of the Conference "Advances in Dynamical Systems and Quantum Physics", Capri, Italy, 19-22 May, 1993. World Scientific, SingaporeGoogle Scholar
  19. 19.
    Benedetti R., Petronio C. (1992). Lectures on Hyperbolic Geometry. Springer Verlag, Berlin-HeidelbergzbMATHGoogle Scholar
  20. 20.
    Katok S. (1992). Fuchsian Groups. The University of Chicago Press, ChicagozbMATHGoogle Scholar
  21. 21.
    Goldman W.M. (1987). Projective structures with Fuchsian holonomy. J. Diff. Geom. 25:297–326zbMATHGoogle Scholar
  22. 22.
    Hejhal D.A. (1975). Monodromy groups and linearly polymorphic functions. Acta. Math. 135:1–55zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Maskit B. (1969). On a class of Kleinian groups. Ann. Acad. Sci. Fenn. Ser. A 442:1–8MathSciNetGoogle Scholar
  24. 24.
    Thurston,W.P.: Geometry and Topology of Three-Manifolds. Lecture notes, Princeton University, (1979).Google Scholar
  25. 25.
    Thurston W.P. (1987) Earthquakes in two-dimensional hyperbolic geometry. In: Epstein D.B. (ed) Low dimensional topology and Kleinian groups. Cambridge University Press, Cambridge, pp. 91–112Google Scholar
  26. 26.
    McMullen C. (1998). Complex Earthquakes and Teichmüller theory. J. Amer. Math. Soc. 11:283–320zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Sharpe R.W. (1996). Differential Geometry. Springer Verlag, New YorkGoogle Scholar
  28. 28.
    Matschull H.-J. (1999). On the relation between (2+1) Einstein gravity and Chern-Simons Theory. Class. Quant. Grav. 16:2599–609zbMATHCrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Alekseev A.Y., Malkin A.Z. (1995). Symplectic structure of the moduli space of flat connections on a Riemann surface. Commun. Math. Phys. 169:99–119zbMATHCrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Fock V.V., Rosly A.A. (1999). Poisson structures on moduli of flat connections on Riemann surfaces and r-matrices. Am. Math. Soc. Transl. 191:67–86MathSciNetGoogle Scholar
  31. 31.
    Alekseev A.Y., Grosse H., Schomerus V. (1995). Combinatorial quantization of the Hamiltonian Chern-Simons Theory. Commun. Math. Phys. 172:317–58zbMATHCrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Alekseev A.Y., Grosse H., Schomerus V. (1995). Combinatorial quantization of the Hamiltonian Chern-Simons Theory II. Commun. Math. Phys. 174:561–604CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Buffenoir E., Roche P. (1999). Harmonic analysis on the quantum Lorentz group. Commun. Math. Phys. 207:499-555zbMATHCrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Buffenoir E., Noui K., Roche P. (2002). Hamiltonian Quantization of Chern-Simons theory with \(SL(2,\mathbb{C})\) Group. Class. Quant. Grav. 19:4953-5016zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations