Communications in Mathematical Physics

, Volume 266, Issue 1, pp 153–196

On the Third Critical Field in Ginzburg-Landau Theory



Using recent results by the authors on the spectral asymptotics of the Neumann Laplacian with magnetic field, we give precise estimates on the critical field, \(H_{C_3}\), describing the appearance of superconductivity in superconductors of type II. Furthermore, we prove that the local and global definitions of this field coincide. Near \(H_{C_3}\) only a small part, near the boundary points where the curvature is maximal, of the sample carries superconductivity. We give precise estimates on the size of this zone and decay estimates in both the normal (to the boundary) and parallel variables.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ag.
    Agmon S. Lectures on exponential decay of solutions of second order elliptic equations. Math. Notes, T. 29, Princeton, NI: Princeton University Press, 1982Google Scholar
  2. BaPhTa.
    Bauman P., Phillips D., Tang Q. (1998) Stable nucleation for the Ginzburg-Landau system with an applied magnetic field. Arch. Rat. Mech. Anal. 142, 1–43CrossRefMathSciNetMATHGoogle Scholar
  3. BeSt.
    Bernoff A., Sternberg P. (1998) Onset of superconductivity in decreasing fields for general domains. J. Math. Phys. 39, 1272–1284CrossRefADSMathSciNetMATHGoogle Scholar
  4. BoHe.
    Bolley C., Helffer B. (1993) An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material. Ann. Inst. H. Poincaré (Section Physique Théorique) 58(2): 169–233MathSciNetGoogle Scholar
  5. Bon1.
    Bonnaillie, V. Analyse mathématique de la supraconductivité dans un domaine à coins : méthodes semi-classiques et numériques. Thèse de Doctorat, Université Paris 11, 2003Google Scholar
  6. Bon2.
    Bonnaillie V. (2005) On the fundamental state for a Schrödinger operator with magnetic fields in domains with corners. Asymptotic Anal. 41(3–4): 215–258MathSciNetMATHGoogle Scholar
  7. BonDa.
    Bonnaillie-Noël V., Dauge M. Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near a corner. Preprint University of Rennes, 2005Google Scholar
  8. DaHe.
    Dauge M., Helffer B. (1993) Eigenvalues variation I, Neumann problem for Sturm-Liouville operators. J. Differ. Eqs. 104(2): 243–262CrossRefMathSciNetMATHGoogle Scholar
  9. DGP.
    Du X., Gunzburger M.D., Peterson J.S. (1992) Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34(1): 54–81CrossRefMathSciNetMATHGoogle Scholar
  10. FoHe1.
    Fournais, S., Helffer, B. Energy asymptotics for type II superconductors. Calc. Var. and PDE 24, no. 3, 341–376 (2005)Google Scholar
  11. FoHe2.
    Fournais, S., Helffer, B. Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian. Preprint 2004. To appear in Annales de l’Institut Fourier.Google Scholar
  12. GiPh.
    Giorgi, T., Phillips, D. The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model. SIAM J. Math. Anal. 302, no. 2, 341–359 (1999) (electronic)Google Scholar
  13. Hel.
    Helffer B. (1988) Introduction to the semiclassical analysis for the Schrödinger operator and applications. Springer Lecture Notes in Math. 1336, Springer Verlag, Berlin Heidelberg New yorkGoogle Scholar
  14. HeMo1.
    Helffer B., Mohamed A. (1996) Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells. J. Funct. Anal. 138(1): 40–81CrossRefMathSciNetMATHGoogle Scholar
  15. HeMo2.
    Helffer B., Morame A. (2001) Magnetic bottles in connection with superconductivity. J. Funct. Anal. 185(2): 604–680CrossRefMathSciNetMATHGoogle Scholar
  16. HePa.
    Helffer B., Pan X. (2003) Upper critical field and location of surface nucleation of superconductivity. Ann. Inst. H. Poincaré (Section Analyse non linéaire) 20(1): 145–181CrossRefMathSciNetMATHGoogle Scholar
  17. HeSj1.
    Helffer B., Sjöstrand J. (1984) Multiple wells in the semiclassical limit I. Comm. Partial Differ. Eqs. 9(4): 337–408CrossRefMATHGoogle Scholar
  18. Kato.
    Kato T. (1976) Perturbation theory for linear operators. Springer-Verlag, BerlinMATHGoogle Scholar
  19. LuPa1.
    Lu K., Pan X.-B. (1999) Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity. Physica D 127, 73–104CrossRefADSMathSciNetMATHGoogle Scholar
  20. LuPa2.
    Lu K., Pan X.-B. (1999) Eigenvalue problems of Ginzburg-Landau operator in bounded domains. J. Math. Phys. 40(6): 2647–2670CrossRefADSMathSciNetMATHGoogle Scholar
  21. LuPa3.
    Lu K., Pan X.-B. (2000) Gauge invariant eigenvalue problems on \(\mathbb {R}\) 2 and \(\mathbb {R}\) 2 +. Trans. Amer. Math. Soc. 352(3): 1247–1276CrossRefMathSciNetMATHGoogle Scholar
  22. LuPa4.
    Lu K., Pan X.-B. (2000) Surface nucleation of superconductivity in 3-dimension. J. Differ. Eqs. 168(2): 386–452CrossRefMathSciNetMATHGoogle Scholar
  23. Pan.
    Pan X.-B. (2002) Surface superconductivity in applied magnetic fields above \(H_{C_3}\). Commun. Math. Phys. 228, 327–370CrossRefADSMATHGoogle Scholar
  24. PiFeSt.
    del Pino M., Felmer P.L., Sternberg P. (2000) Boundary concentration for eigenvalue problems related to the onset of superconductivity. Commun. Math. Phys. 210, 413–446CrossRefADSMathSciNetMATHGoogle Scholar
  25. ReSi.
    Reed M., Simon B. (1978) Methods of modern Mathematical Physics, IV : Analysis of operators. Academic Press, New YorkMATHGoogle Scholar
  26. S-JSaTh.
    Saint-James D., Sarma G., Thomas E.J. (1969) Type II Superconductivity. Pergamon, OxfordGoogle Scholar
  27. Si.
    Simon B. (1983) Semi-classical analysis of low lying eigenvalues I. Ann. Inst. H. Poincaré (Section Physique Théorique) 38(4): 295–307MATHGoogle Scholar
  28. St.
    Sternberg P. (1999), On the Normal/Superconducting Phase Transition in the Presence of Large Magnetic Fields. In: Berger J., Rubinstein J. (eds). Connectivity and Superconductivity. Springer-Verlag, Berlin Heidelberg New york, pp. 188–199Google Scholar
  29. TiTi.
    Tilley D.R., Tilley J. (1990) Superfluidity and superconductivity. 3rd edition. Institute of Physics Publishing, Bristol-PhiladelphiaGoogle Scholar
  30. Ti.
    Tinkham M. (1975) Introduction to Superconductivity. McGraw-Hill Inc., New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques UMR CNRS 8628Université Paris-Sud - Bât 425Orsay CedexFrance
  2. 2.CNRS and Laboratoire de Mathématiques UMR CNRS 8628Université Paris-Sud - Bât 425Orsay CedexFrance

Personalised recommendations