Communications in Mathematical Physics

, Volume 263, Issue 2, pp 535–552

A Tomography of the GREM: Beyond the REM Conjecture



In a companion paper we proved that in a large class of Gaussian disordered spin systems the local statistics of energy values near levels N1/2+α with α<1/2 are described by a simple Poisson process. In this paper we address the issue as to whether this is optimal, and what will happen if α=1/2. We do this by analysing completely the Gaussian Generalised Random Energy Models (GREM). We show that the REM behaviour persists up to the level βcN, where βc denotes the critical temperature. We show that, beyond this value, the simple Poisson process must be replaced by more and more complex mixed Poisson point processes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauke, H., Mertens, St.: Universality in the level statistics of disordered systems. Phys. Rev. E, 70, 025102(R) (2004)CrossRefADSGoogle Scholar
  2. 2.
    Borgs, C., Chayes, J.T., Mertens, S., Nair, C.: Proof of the local REM conjecture for number partitioning II: Growing energy scales., 2005
  3. 3.
    Bovier, A., Kurkova, I.: Derrida's generalized random energy models. I. Models with finitely many hierarchies. Ann. Inst. H. Poincaré Probab. Statist. 40(4), 439–480 (2004)MathSciNetGoogle Scholar
  4. 4.
    Bovier, A., Kurkova, I.: Local energy statistics in disordered systems: a proof of the local REM conjecture. Commun. Math. Phys. 263(2), 513–533 (2006)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Bovier, A., Kurkova, I., Lowe, M.: Fluctuations of the free energy in the REM and the p-spin SK models. Ann. Probab. 30, 605–651 (2002)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Daley, D.J., Vere-Jones, D.: An introduction to the theory of point processes. Springer Series in Statistics, Berlin-Heidelberg New York: Springer-Verlag, 1988Google Scholar
  7. 7.
    Derrida, B.: Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B (3), 24(5), 2613–2626 (1981)Google Scholar
  8. 8.
    Derrida, B.: A generalization of the random energy model that includes correlations between the energies. J. Phys. Lett. 46, 401–407 (1985)ADSMathSciNetGoogle Scholar
  9. 9.
    Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and related properties of random sequences and processes. Springer Series in Statistics. New York: Springer-Verlag, 1983Google Scholar
  10. 10.
    Kallenberg, O.: Random Measures. Fourth ed., Berlin: Akademie Verlag, 1986Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Weierstraß–Institut für Angewandte Analysis und Stochastik10117BerlinGermany
  2. 2.Institut für MathematikTechnische Universität BerlinBerlinGermany
  3. 3.Laboratoire de Probabilités et Modèles AléatoiresUniversité Paris 6Paris, Cedex 5France

Personalised recommendations