Communications in Mathematical Physics

, Volume 263, Issue 2, pp 513–533 | Cite as

Local Energy Statistics in Disordered Systems: A Proof of the Local REM Conjecture



Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should, in most circumstances, be the same as in the random energy model. Here we give necessary conditions for this hypothesis to be true, which we show to be satisfied in wide classes of examples: short range spin glasses and mean field spin glasses of the SK type. We also show that, under certain conditions, the conjecture holds even if energy levels that grow moderately with the volume of the system are considered.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauke, H., Franz, S., Mertens, S.: Number partitioning as random energy model. J. Stat. Mech.: Theory and Experiment, page P04003 (2004)Google Scholar
  2. 2.
    Bauke, H., Mertens, S.: Universality in the level statistics of disordered systems. Phys. Rev. E 70, 025102(R) (2004)CrossRefADSGoogle Scholar
  3. 3.
    Borgs, C., Chayes, J., Pittel, B.: Phase transition and finite-size scaling for the integer partitioning problem. Random Structures Algorithms 19(3–4), 247–288 (2001)Google Scholar
  4. 4.
    Borgs, C., Chayes, J.T., Mertens, S., Pittel, B.: Phase diagram for the constrained integer partitioning problem. Random Structures Algorithms 24(3), 315–380 (2004)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Borgs, C., Chayes, J.T., Mertens, S., Nair, C.: Proof of the local REM conjecture for number partitioning. Preprint 2005, available at
  6. 6.
    Borgs, C., Chayes, J.T., Mertens, S., Nair, C.: Proof of the local REM conjecture for number partitioning II: Growing energy scales. cond-mat/0508600, 2005
  7. 7.
    Bovier, A.: Statistical mechanics of disordered systems. In: Cambridge Series in Statistical and Probabilisitc mathematics, Cambridge University Press, to appear May 2006Google Scholar
  8. 8.
    Bovier, A., Kurkova, I.: Derrida's generalised random energy models. I. Models with finitely many hierarchies. Ann. Inst. H. Poincaré Probab. Statist. 40(4), 439–480 (2004)MathSciNetGoogle Scholar
  9. 9.
    Bovier, A., Kurkova, I.: Poisson convergence in the restricted k-partioning problem. Preprint 964, WIAS, 2004, available at, to appear in Random Structures Algorithms (2006)
  10. 10.
    Bovier, A., Kurkova, I.: A tomography of the GREM: beyond the REM conjecture. Commun. Math. Phys. 263(2), 535–552 (2006)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Bovier, A., Kurkov, I., Löwe, M.: Fluctuations of the free energy in the REM and the p-spin SK models. Ann. Probab. 30, 605–651 (2002)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Bovier, A., Mason, D.: Extreme value behaviour in the Hopfield model. Ann. Appl. Probab. 11, 91–120 (2001)MATHMathSciNetGoogle Scholar
  13. 13.
    Derrida, B.: Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B (3) 24(5), 2613–2626 (1981)Google Scholar
  14. 14.
    Derrida, B.: A generalisation of the random energy model that includes correlations between the energies. J. Phys. Lett. 46, 401–407 (1985)ADSMathSciNetGoogle Scholar
  15. 15.
    Mertens, S.: Phase transition in the number partitioning problem. Phys. Rev. Lett. 81(20), 4281–4284 (1998)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Mertens, S.: A physicist's approach to number partitioning. Theoret. Comput. Sci. 265(1–2), 79–108, (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Weierstraß–Institut für Angewandte Analysis und StochastikBerlinGermany
  2. 2.Institut für MathematikTechnische Universität BerlinBerlinGermany
  3. 3.Laboratoire de Probabilités et Modèles AléatoiresUniversité Paris 6Paris, Cedex 5France

Personalised recommendations