Communications in Mathematical Physics

, Volume 263, Issue 2, pp 461–512 | Cite as

Limit Theorems in the Stadium Billiard



We prove that the Birkhoff sums for ``almost every'' relevant observable in the stadium billiard obey a non-standard limit law. More precisely, the usual central limit theorem holds for an observable if and only if its integral along a one-codimensional invariant set vanishes, otherwise a Open image in new window normalization is needed. As one of the two key steps in the argument, we obtain a limit theorem that holds in Young towers with exponential return time statistics in general, an abstract result that seems to be applicable to many other situations.


  1. 1.
    Aaronson, J.: An introduction to infinite ergodic theory. Volume 50 of Mathematical Surveys and Monographs. Providence RI: American Mathematical Society, 1997Google Scholar
  2. 2.
    Aaronson, J., Denker, M.: A local limit theorem for stationary processes in the domain of attraction of a normal distribution. In N. Balakrishnan, I.A. Ibragimov, V.B. Nevzorov, eds., Asymptotic methods in probability and statistics with applications. Papers from the international conference, St. Petersburg, Russia, 1998, Basel: Birkhäuser, 2001, pp. 215–224Google Scholar
  3. 3.
    Bunimovich, L.: On the ergodic properties of nowhere dispersing billiards. Commun. Math. Phys. 65, 295–312 (1979)CrossRefADSMATHMathSciNetGoogle Scholar
  4. 4.
    Baladi, V., Young, L.-S.: On the spectra of randomly perturbed expanding maps. Commun. Math. Phys. 156, 355–385 (1993)CrossRefADSMATHMathSciNetGoogle Scholar
  5. 5.
    Chernov, N.: Entropy, Lyapunov exponents and mean free path for billiards. J. Stat. Phys. 88, 1–29 (1997)MATHMathSciNetGoogle Scholar
  6. 6.
    Chernov, N.: Decay of correlations and dispersing billiards. J. Stat. Phys. 94, 513–556 (1999)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chernov, N., Zhang, H.: Billiards with polynomial mixing rates. Nonlinearity 18, 1527–1554 (2005)CrossRefADSMATHMathSciNetGoogle Scholar
  8. 8.
    Eagleson, G.K.: Some simple conditions for limit theorems to be mixing. Teor. Verojatnost. i Primenen. 21(3), 53–660 (1976)MathSciNetGoogle Scholar
  9. 9.
    Gordin, M.: The central limit theorem for stationary processes. Dokl. Akad. Nauk SSSR 188, 739–741 (1969)MATHMathSciNetGoogle Scholar
  10. 10.
    Gouëzel, S.: Statistical properties of a skew-product with a curve of neutral points. pdf, 2004
  11. 11.
    Gouëzel, S.: Central limit theorem and stable laws for intermittent maps. Probab. Theory and Rel. Fields 128, 82–122 (2004)CrossRefMATHGoogle Scholar
  12. 12.
    Gouëzel, S.: Berry-Esseen theorem and local limit theorem for non uniformly expanding maps., Annales de l'IHP Probabilités et Statistiques, 41, 997–1024
  13. 13.
    Gouëzel, S.: Regularity of coboundaries for non uniformly expanding Markov maps. Proc. Am. Math. Soc. 134(2), 391–401 (2005)CrossRefGoogle Scholar
  14. 14.
    Hennion, H.: Sur un théorème spectral et son application aux noyaux lipschitziens. Proc. Amer. Math. Soc. 118, 627–634 (1993)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Kachurovskii, A.G.: Rates of convergence in ergodic theorems. Russian Math. Surveys 51, 653–703 (1996)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Keller, G., Liverani, C.: Stability of the spectrum for transfer operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28(1), 141–152 (1999)Google Scholar
  17. 17.
    Machta, J.: Power law decay of correlations in a billiard problem. J. Statist. Phys. 32, 555–564 (1983)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Markarian, R.: Billiards with polynomial decay of correlations. Ergodic Theory Dynam. Systems 24, 177–197 (2004)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Melbourne, I., Török, A.: Statistical limit theorems for suspension flows. Israel J. Math. 144, 191–210, 2004Google Scholar
  20. 20.
    Szász, D., Varjú, T.: Local limit theorem for the Lorentz process and its recurrence on the plane. Ergodic Theory Dynam. Systems 24, 257–278 (2004)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Szász, D., Varjú, T.: Markov towers and stochastic properties of billiards. In: Modern dynamical systems and applications, Cambridge: Cambridge University Press, 2004, pp. 433–445Google Scholar
  22. 22.
    Szász, D., Varjú, T.: Limit laws and recurrence for the planar Lorentz process with infinite horizon. Preprint, 2005Google Scholar
  23. 23.
    Young, L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. (2) 147, 585–650 (1998)Google Scholar
  24. 24.
    Young, L.-S.: Recurrence times and rates of mixing. Israel J. Math. 110, 153–188 (1999)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Institute of MathematicsBudapest University of Technology and EconomicsBudapestHungary
  2. 2.IRMARUniversité de Rennes 1Rennes CedexFrance

Personalised recommendations