Communications in Mathematical Physics

, Volume 263, Issue 2, pp 461–512 | Cite as

Limit Theorems in the Stadium Billiard

Article

Abstract

We prove that the Birkhoff sums for ``almost every'' relevant observable in the stadium billiard obey a non-standard limit law. More precisely, the usual central limit theorem holds for an observable if and only if its integral along a one-codimensional invariant set vanishes, otherwise a Open image in new window normalization is needed. As one of the two key steps in the argument, we obtain a limit theorem that holds in Young towers with exponential return time statistics in general, an abstract result that seems to be applicable to many other situations.

References

  1. 1.
    Aaronson, J.: An introduction to infinite ergodic theory. Volume 50 of Mathematical Surveys and Monographs. Providence RI: American Mathematical Society, 1997Google Scholar
  2. 2.
    Aaronson, J., Denker, M.: A local limit theorem for stationary processes in the domain of attraction of a normal distribution. In N. Balakrishnan, I.A. Ibragimov, V.B. Nevzorov, eds., Asymptotic methods in probability and statistics with applications. Papers from the international conference, St. Petersburg, Russia, 1998, Basel: Birkhäuser, 2001, pp. 215–224Google Scholar
  3. 3.
    Bunimovich, L.: On the ergodic properties of nowhere dispersing billiards. Commun. Math. Phys. 65, 295–312 (1979)CrossRefADSMATHMathSciNetGoogle Scholar
  4. 4.
    Baladi, V., Young, L.-S.: On the spectra of randomly perturbed expanding maps. Commun. Math. Phys. 156, 355–385 (1993)CrossRefADSMATHMathSciNetGoogle Scholar
  5. 5.
    Chernov, N.: Entropy, Lyapunov exponents and mean free path for billiards. J. Stat. Phys. 88, 1–29 (1997)MATHMathSciNetGoogle Scholar
  6. 6.
    Chernov, N.: Decay of correlations and dispersing billiards. J. Stat. Phys. 94, 513–556 (1999)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chernov, N., Zhang, H.: Billiards with polynomial mixing rates. Nonlinearity 18, 1527–1554 (2005)CrossRefADSMATHMathSciNetGoogle Scholar
  8. 8.
    Eagleson, G.K.: Some simple conditions for limit theorems to be mixing. Teor. Verojatnost. i Primenen. 21(3), 53–660 (1976)MathSciNetGoogle Scholar
  9. 9.
    Gordin, M.: The central limit theorem for stationary processes. Dokl. Akad. Nauk SSSR 188, 739–741 (1969)MATHMathSciNetGoogle Scholar
  10. 10.
    Gouëzel, S.: Statistical properties of a skew-product with a curve of neutral points. http://name.math.Univ-rennes1.fr/Sebastien.gouezel/articles/skewproduct. pdf, 2004
  11. 11.
    Gouëzel, S.: Central limit theorem and stable laws for intermittent maps. Probab. Theory and Rel. Fields 128, 82–122 (2004)CrossRefMATHGoogle Scholar
  12. 12.
    Gouëzel, S.: Berry-Esseen theorem and local limit theorem for non uniformly expanding maps. http://name.math.Univ-rennes1.fr/Sebastien.gouezel/articles/vitesse-TCL.pdf, Annales de l'IHP Probabilités et Statistiques, 41, 997–1024
  13. 13.
    Gouëzel, S.: Regularity of coboundaries for non uniformly expanding Markov maps. Proc. Am. Math. Soc. 134(2), 391–401 (2005)CrossRefGoogle Scholar
  14. 14.
    Hennion, H.: Sur un théorème spectral et son application aux noyaux lipschitziens. Proc. Amer. Math. Soc. 118, 627–634 (1993)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Kachurovskii, A.G.: Rates of convergence in ergodic theorems. Russian Math. Surveys 51, 653–703 (1996)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Keller, G., Liverani, C.: Stability of the spectrum for transfer operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28(1), 141–152 (1999)Google Scholar
  17. 17.
    Machta, J.: Power law decay of correlations in a billiard problem. J. Statist. Phys. 32, 555–564 (1983)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Markarian, R.: Billiards with polynomial decay of correlations. Ergodic Theory Dynam. Systems 24, 177–197 (2004)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Melbourne, I., Török, A.: Statistical limit theorems for suspension flows. Israel J. Math. 144, 191–210, 2004Google Scholar
  20. 20.
    Szász, D., Varjú, T.: Local limit theorem for the Lorentz process and its recurrence on the plane. Ergodic Theory Dynam. Systems 24, 257–278 (2004)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Szász, D., Varjú, T.: Markov towers and stochastic properties of billiards. In: Modern dynamical systems and applications, Cambridge: Cambridge University Press, 2004, pp. 433–445Google Scholar
  22. 22.
    Szász, D., Varjú, T.: Limit laws and recurrence for the planar Lorentz process with infinite horizon. Preprint, 2005Google Scholar
  23. 23.
    Young, L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. (2) 147, 585–650 (1998)Google Scholar
  24. 24.
    Young, L.-S.: Recurrence times and rates of mixing. Israel J. Math. 110, 153–188 (1999)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Institute of MathematicsBudapest University of Technology and EconomicsBudapestHungary
  2. 2.IRMARUniversité de Rennes 1Rennes CedexFrance

Personalised recommendations