Communications in Mathematical Physics

, Volume 263, Issue 1, pp 65–88 | Cite as

A Hopf Bundle Over a Quantum Four-Sphere from the Symplectic Group

Article

Abstract

We construct a quantum version of the SU(2) Hopf bundle S7S4. The quantum sphere S7q arises from the symplectic group Spq(2) and a quantum 4-sphere S4q is obtained via a suitable self-adjoint idempotent p whose entries generate the algebra A(S4q) of polynomial functions over it. This projection determines a deformation of an (anti-)instanton bundle over the classical sphere S4. We compute the fundamental K-homology class of S4q and pair it with the class of p in the K-theory getting the value −1 for the topological charge. There is a right coaction of SUq(2) on S7q such that the algebra A(S7q) is a non-trivial quantum principal bundle over A(S4q) with structure quantum group A(SUq(2)).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.: The geometry of Yang-Mills fields. Lezioni Fermiane. Accademia Nazionale dei Lincei e Scuola Normale Superiore, Pisa 1979Google Scholar
  2. 2.
    Belavin, A., Polyakov, A., Schwartz, A., Tyupkin, Y.: Pseudoparticles solutions of the Yang-Mills equations. Phys. Lett. 58 B, 85–87 (1975)MathSciNetGoogle Scholar
  3. 3.
    Bonechi, F., Ciccoli, N., Tarlini, M.: Noncommutative instantons on the 4-sphere from quantum groups. Commun. Math. Phys. 226, 419–432 (2002)CrossRefADSMATHMathSciNetGoogle Scholar
  4. 4.
    Bonechi, F., Ciccoli, N., Dabrowski, L., Tarlini, L.M.: Bijectivity of the canonical map for the non-commutative instanton bundle. J. Geom. Phys. 51, 71–81 (2004)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Brzeziński, T., Dabrowski, L., Zielinski, B.: Hopf fibration and monopole connection over the contact quantum spheres. J. Geom. Phys. 50, 345–359 (2004)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Brzeziński, T., Hajac, P.M.: Coalgebra extensions and algebra coextensions of Galois type. Commun. Algebra 27, 1347–1368 (1999)Google Scholar
  7. 7.
    Brzeziński, T., Hajac, P.M.: The Chern-Galois character. C. R. Acad. Sci. Paris, Ser. I 333, 113–116 (2004)Google Scholar
  8. 8.
    Brzeziński, T., Majid, S.: Quantum group gauge theory on quantum spaces. Commun. Math. Phys. 157, 591–638 (1993) Erratum 167, 235 (1995)CrossRefADSGoogle Scholar
  9. 9.
    Brzeziński, T., Majid, S.: Coalgebra Bundles. Commun. Math. Phys. 191, 467–492 (1998)CrossRefADSGoogle Scholar
  10. 10.
    Connes, A.: Noncommutative geometry. London-New York: Academic Press, 1994Google Scholar
  11. 11.
    Durdevich, M.: Geometry of quantum principal bundles I. Commun. Math. Phys. 175, 427–521 (1996); Geometry of quantum principal bundles II. Rev. Math. Phys. 9, 531–607 (1997)ADSGoogle Scholar
  12. 12.
    Dabrowski, L., Grosse, H., Hajac, P.M.: Strong connections and Chern-Connes pairing in the Hopf-Galois theory. Commun. Math. Phys. 206, 247–264 (1999)CrossRefGoogle Scholar
  13. 13.
    Hajac, P.M.: Strong connections on quantum principal bundles. Commun. Math. Phys. 182, 579–617 (1996)MATHMathSciNetGoogle Scholar
  14. 14.
    Hajac, P.M., Majid, S.: Projective module description of the q-monopole. Commun. Math. Phys. 206, 247–264 (1999)CrossRefADSMATHMathSciNetGoogle Scholar
  15. 15.
    Hajac, P.M., Matthes, R., Szymański, W.: A locally trivial quantum Hopf fibration. http://arXiv.org/list/math.QA/0112317, 2001; to appear in Algebra and Representation Theory
  16. 16.
    Landi, G.: Deconstructing monopoles and instantons. Rev. Math. Phys. 12, 1367–1390 (2000)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Majid, S.: Quantum and braided group Riemannian geometry. J. Geom. Phys. 30, 113–146 (1999)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Kassel, C.: Quantum groups. Berlin-Heidelberg-New York: Springer 1995Google Scholar
  19. 19.
    Klimyk, A., Schmüdgen, K.: Quantum groups and their representations. Berlin-Heidelberg: Springer Verlag, 1997Google Scholar
  20. 20.
    Kreimer, H.F., Takeuchi, M.: Hopf algebras and Galois extensions of an algebra. Indiana Univ. Math. J. 30, 675–692 (1981)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Masuda, T., Nakagami, Y., Watanabe, J.: Noncommutative differential geometry on the quantum SU(2). I:An algebraic viewpoint. K-Theory 4, 157–180 (1990); Noncommutative differential geometry on the quantum two sphere of P.Podleś. I: An algebraic viewpoint. K-Theory 5, 151–175 (1991)Google Scholar
  22. 22.
    Montgomery, S.: Hopf algebras and their actions on rings. Providence, RI: AMS 1993Google Scholar
  23. 23.
    Pagani, C.: In preparationGoogle Scholar
  24. 24.
    Podleś, P.: Quantum spheres. Lett. Math. Phys. 14, 193–202 (1987)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Reshetikhin, N.Yu., Takhtadzhyan, L.A., Faddeev, L.D.: Quantization of Lie groups and Lie algebras. Leningrad Math. J. 1, 193–225 (1990)MATHMathSciNetGoogle Scholar
  26. 26.
    Schauenburg, P.: Bi-Galois objects over Taft algebras. Israel J. Math. 115, 101–123 (2000)MATHMathSciNetGoogle Scholar
  27. 27.
    Schauenburg, P., Schneider, H.: Galois type extensions of noncommutative algebras. In preparationGoogle Scholar
  28. 28.
    Schneider, H.: Principal homogeneous spaces for arbitrary Hopf algebras. Israel J. Math. 72, 167–195 (1990)MATHMathSciNetGoogle Scholar
  29. 29.
    Simon, B.: Trace ideals and their applications. Cambridge: Cambridge Univ. Press, 1979Google Scholar
  30. 30.
    Woronowicz, S.L.: Twisted SU(2) group. An example of a noncommutative differential calculus. Publ. Res. Inst. Math. Sci. 23, 117–181 (1987)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di TriesteTriesteItaly
  2. 2.S.I.S.S.A. International School for Advanced StudiesTriesteItaly
  3. 3.I.N.F.NNapoliItaly

Personalised recommendations