Communications in Mathematical Physics

, Volume 263, Issue 1, pp 65–88 | Cite as

A Hopf Bundle Over a Quantum Four-Sphere from the Symplectic Group



We construct a quantum version of the SU(2) Hopf bundle S7S4. The quantum sphere S7q arises from the symplectic group Spq(2) and a quantum 4-sphere S4q is obtained via a suitable self-adjoint idempotent p whose entries generate the algebra A(S4q) of polynomial functions over it. This projection determines a deformation of an (anti-)instanton bundle over the classical sphere S4. We compute the fundamental K-homology class of S4q and pair it with the class of p in the K-theory getting the value −1 for the topological charge. There is a right coaction of SUq(2) on S7q such that the algebra A(S7q) is a non-trivial quantum principal bundle over A(S4q) with structure quantum group A(SUq(2)).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah, M.: The geometry of Yang-Mills fields. Lezioni Fermiane. Accademia Nazionale dei Lincei e Scuola Normale Superiore, Pisa 1979Google Scholar
  2. 2.
    Belavin, A., Polyakov, A., Schwartz, A., Tyupkin, Y.: Pseudoparticles solutions of the Yang-Mills equations. Phys. Lett. 58 B, 85–87 (1975)MathSciNetGoogle Scholar
  3. 3.
    Bonechi, F., Ciccoli, N., Tarlini, M.: Noncommutative instantons on the 4-sphere from quantum groups. Commun. Math. Phys. 226, 419–432 (2002)CrossRefADSMATHMathSciNetGoogle Scholar
  4. 4.
    Bonechi, F., Ciccoli, N., Dabrowski, L., Tarlini, L.M.: Bijectivity of the canonical map for the non-commutative instanton bundle. J. Geom. Phys. 51, 71–81 (2004)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Brzeziński, T., Dabrowski, L., Zielinski, B.: Hopf fibration and monopole connection over the contact quantum spheres. J. Geom. Phys. 50, 345–359 (2004)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Brzeziński, T., Hajac, P.M.: Coalgebra extensions and algebra coextensions of Galois type. Commun. Algebra 27, 1347–1368 (1999)Google Scholar
  7. 7.
    Brzeziński, T., Hajac, P.M.: The Chern-Galois character. C. R. Acad. Sci. Paris, Ser. I 333, 113–116 (2004)Google Scholar
  8. 8.
    Brzeziński, T., Majid, S.: Quantum group gauge theory on quantum spaces. Commun. Math. Phys. 157, 591–638 (1993) Erratum 167, 235 (1995)CrossRefADSGoogle Scholar
  9. 9.
    Brzeziński, T., Majid, S.: Coalgebra Bundles. Commun. Math. Phys. 191, 467–492 (1998)CrossRefADSGoogle Scholar
  10. 10.
    Connes, A.: Noncommutative geometry. London-New York: Academic Press, 1994Google Scholar
  11. 11.
    Durdevich, M.: Geometry of quantum principal bundles I. Commun. Math. Phys. 175, 427–521 (1996); Geometry of quantum principal bundles II. Rev. Math. Phys. 9, 531–607 (1997)ADSGoogle Scholar
  12. 12.
    Dabrowski, L., Grosse, H., Hajac, P.M.: Strong connections and Chern-Connes pairing in the Hopf-Galois theory. Commun. Math. Phys. 206, 247–264 (1999)CrossRefGoogle Scholar
  13. 13.
    Hajac, P.M.: Strong connections on quantum principal bundles. Commun. Math. Phys. 182, 579–617 (1996)MATHMathSciNetGoogle Scholar
  14. 14.
    Hajac, P.M., Majid, S.: Projective module description of the q-monopole. Commun. Math. Phys. 206, 247–264 (1999)CrossRefADSMATHMathSciNetGoogle Scholar
  15. 15.
    Hajac, P.M., Matthes, R., Szymański, W.: A locally trivial quantum Hopf fibration., 2001; to appear in Algebra and Representation Theory
  16. 16.
    Landi, G.: Deconstructing monopoles and instantons. Rev. Math. Phys. 12, 1367–1390 (2000)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Majid, S.: Quantum and braided group Riemannian geometry. J. Geom. Phys. 30, 113–146 (1999)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Kassel, C.: Quantum groups. Berlin-Heidelberg-New York: Springer 1995Google Scholar
  19. 19.
    Klimyk, A., Schmüdgen, K.: Quantum groups and their representations. Berlin-Heidelberg: Springer Verlag, 1997Google Scholar
  20. 20.
    Kreimer, H.F., Takeuchi, M.: Hopf algebras and Galois extensions of an algebra. Indiana Univ. Math. J. 30, 675–692 (1981)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Masuda, T., Nakagami, Y., Watanabe, J.: Noncommutative differential geometry on the quantum SU(2). I:An algebraic viewpoint. K-Theory 4, 157–180 (1990); Noncommutative differential geometry on the quantum two sphere of P.Podleś. I: An algebraic viewpoint. K-Theory 5, 151–175 (1991)Google Scholar
  22. 22.
    Montgomery, S.: Hopf algebras and their actions on rings. Providence, RI: AMS 1993Google Scholar
  23. 23.
    Pagani, C.: In preparationGoogle Scholar
  24. 24.
    Podleś, P.: Quantum spheres. Lett. Math. Phys. 14, 193–202 (1987)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Reshetikhin, N.Yu., Takhtadzhyan, L.A., Faddeev, L.D.: Quantization of Lie groups and Lie algebras. Leningrad Math. J. 1, 193–225 (1990)MATHMathSciNetGoogle Scholar
  26. 26.
    Schauenburg, P.: Bi-Galois objects over Taft algebras. Israel J. Math. 115, 101–123 (2000)MATHMathSciNetGoogle Scholar
  27. 27.
    Schauenburg, P., Schneider, H.: Galois type extensions of noncommutative algebras. In preparationGoogle Scholar
  28. 28.
    Schneider, H.: Principal homogeneous spaces for arbitrary Hopf algebras. Israel J. Math. 72, 167–195 (1990)MATHMathSciNetGoogle Scholar
  29. 29.
    Simon, B.: Trace ideals and their applications. Cambridge: Cambridge Univ. Press, 1979Google Scholar
  30. 30.
    Woronowicz, S.L.: Twisted SU(2) group. An example of a noncommutative differential calculus. Publ. Res. Inst. Math. Sci. 23, 117–181 (1987)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di TriesteTriesteItaly
  2. 2.S.I.S.S.A. International School for Advanced StudiesTriesteItaly
  3. 3.I.N.F.NNapoliItaly

Personalised recommendations