Setting the Quantum Integrand of M-Theory
- 99 Downloads
- 23 Citations
Abstract
In anomaly-free quantum field theories the integrand in the bosonic functional integral—the exponential of the effective action after integrating out fermions—is often defined only up to a phase without an additional choice. We term this choice ``setting the quantum integrand''. In the low-energy approximation to M-theory the E 8-model for the C-field allows us to set the quantum integrand using geometric index theory. We derive mathematical results of independent interest about pfaffians of Dirac operators in 8k+3 dimensions, both on closed manifolds and manifolds with boundary. These theorems are used to set the quantum integrand of M-theory for closed manifolds and for compact manifolds with either temporal (global) or spatial (local) boundary conditions. In particular, we show that M-theory makes sense on arbitrary 11-manifolds with spatial boundary, generalizing the construction of heterotic M-theory on cylinders.
Keywords
Boundary Condition Neural Network Manifold Field Theory Complex SystemPreview
Unable to display preview. Download preview PDF.
References
- 1.Alvarez-Gaumé, L., Della Pietra, S., Moore, G.: Anomalies and odd dimensions. Ann Phys 163, 288 (1985)CrossRefzbMATHADSGoogle Scholar
- 2.Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. I Math. Proc. Cambridge Philos. Soc. 77, 43–69 (1975) II Math. Proc. Cambridge Philos. Soc. 78, 405–432 (1975) III Math. Proc. Cambridge Philos. Soc. 79, 71–9 (1976)zbMATHMathSciNetCrossRefADSGoogle Scholar
- 3.Atiyah, M.F., Singer, I.M.: Index theory for skew-adjoint Fredholm operators. Publ. Math. Inst. Hautes Etudes Sci. (Paris) 37, 5–26 (1969)zbMATHMathSciNetGoogle Scholar
- 4.Bilal, A., Metzger, S.: Anomaly cancellation in M-theory: a critical review. Nucl.Phys. B 675, 416–446 (2003)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 5.Bismut, J.M., Freed, D.S.: The analysis of elliptic families I: Metrics and connections on determinant bundles. Commun. Math. Phys. 106, 159–176 (1986)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 6.Brylinski, J.-L., Mclaughlin, D.: The geometry of degree four characteristic classes and of line bundles on loop space. Duke Math. J. 75, 603–638 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
- 7.Carey, A.L., Murray, M.K.: Faddeev's anomaly and bundle gerbes. Lett. Math. Phys. 3 29–36 (1996)Google Scholar
- 8.Carey, A.L., Mickelsson, J., Murray, M.K.: Bundle gerbes applied to quantum field theory. Rev. Math. Phys. 12, 65–90 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
- 9.Dai, X., Freed, D.S.: η-invariants and determinant lines. J. Math. Phys, 5155–5194 (1994); Erratum, ibid 42, 2343–2344 (2001)Google Scholar
- 10.Deligne, P, Freed, D.S.: Classical field theory In: Deligne, P., Etingof, P., Freed, D.S., Jeffrey, L.C., Kazhdan, D., Morgan, J.W., Morrison, D.R., Witten, E. (eds.,) Quantum Fields and Strings: A Course for Mathematicians, 2 volumes. Providence, RI: American Mathematical Society, pp. 137–225 (1999)Google Scholar
- 11.Diaconescu, E., Freed, D.S., Moore, G.: The M-theory 3-form and E8 gauge theory. http://arxiv.org/list/th/0312069, 2003
- 12.Diaconescu, D.E., Moore, G.W., Witten, E.: E(8) gauge theory, and a derivation of K-theory from M-theory. Adv. Theor. Math. Phys. 6, 1031 (2003)MathSciNetGoogle Scholar
- 13.Faddeev, L.D.: Operator anomaly for the gauss law. Phys.Lett.B 145, 81–84 (1984)CrossRefADSMathSciNetGoogle Scholar
- 14.Faddeev, L.D., Shatashvili, S.L.: Algebraic and Hamiltonian methods in the theory of nonabelian anomalies. Theor. Math. Phys. 60, 770–778 (1985) Teor. Mat. Fiz. 60, 206–217 (1984)CrossRefGoogle Scholar
- 15.Fradkin, E.S., Tseytlin, A.A.: Quantum properties of higher dimensional and dimensionally reduced supersymmetric theories. Nucl. Phys. B 227, 252 (1983)CrossRefADSMathSciNetGoogle Scholar
- 16.Freed, D.S.: On determinant line bundles Mathematical Aspects of String Theory. In: Yau, S.T.(ed.,) Singapore: World Scientific Publishing, pp. 189–238 (1987)Google Scholar
- 17.Freed, D.S.: Dirac charge quantization and generalized differential cohomology. Surv. Differ. Geom., VII (2000), Cambridge, MA: International Press, pp. 129–194 (2002)Google Scholar
- 18.Freed, D.S.: K-Theory in Quantum Field Theory info. In: Freed, D.S., Jenquin, J.J. (eds.,) Current developments in mathematics, 2001, Somerville, MA: Int. Press, pp. 41–87 (2002)Google Scholar
- 19.Freed, D.S., Hopkins, M.J.: In preparationGoogle Scholar
- 20.Freed, D.S., Quinn, F.: Chern-Simons theory with finite gauge group. Commun. Math. Phys. 156, 435–472 (1993)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 21.Hopkins, M.J., Singer, I.M.: Quadratic functions in geometry, topology, and M-theory. http://arxiv.org/list/math.AT/0211216, 2002
- 22.Horava, P., Witten, E.: Heterotic and Type I string dynamics from eleven dimensions. Nucl. Phys. B 460, 506–524 (1996)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 23.Horava, P., Witten, E.: Eleven-dimensional supergravity on a manifold with boundary. Nucl. Phys. B 475, 94–114 (1996)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 24.Jenquin, J.J.: Spin TQFTs and Chern-Simons gauge theory. Ph. D. thesis, 2004Google Scholar
- 25.Kallosh, R.: Modified Feynman rules in supergravity. Nucl. Phys. B 141 141 (1978)Google Scholar
- 26.Mickelsson, J., Scott, S.: Functorial QFT, gauge anomalies and the Dirac determinant bundle. Commun. Math. Phys. 219, 567–605 (2001)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 27.Moss, I.G.: Boundary terms for supergravity and heterotic M-theory. http://arxiv.org/list/hep-th/0403106, 2004
- 28.Nielsen, N.: Ghost counting in supergravity. Nucl. Phys. B 140, 499 (1978)CrossRefADSGoogle Scholar
- 29.Powell, J.: Two theorems on the mapping class group of a surface. Proc. Amer. Math. Soc. 68, 347–350 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
- 30.Quillen, Q.: Superconnections and the Chern character. Topology 24, 89–95 (1985)zbMATHMathSciNetGoogle Scholar
- 31.Quinn, F.: Lectures on axiomatic topological quantum field theory. In: Geometry and quantum field theory (Park City, UT, 1991), IAS/Park City Math. Ser., 1, Providence, RI: Amer. Math. Soc., 1995, pp. 323–453Google Scholar
- 32.Redlich, N.: Gauge noninvariance and parity nonconservation of three-dimensional fermions Phys. Rev. Lett. 52, 18 (1984)CrossRefADSMathSciNetGoogle Scholar
- 33.Redlich, N.: Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions. Phys. Rev. D 29, 2366 (1984)CrossRefADSMathSciNetGoogle Scholar
- 34.Scholl, M.: Ph. D. thesis, in preparationGoogle Scholar
- 35.Scott, S.G., Wojciechowski, K.P.: The ζ-determinant and Quillen determinant for a Dirac operator on a manifold with boundary. Geom. Funct. Anal. 10, 1202–1236 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
- 36.Segal, G.: The definition of conformal field theory. In: Tillmann, U. (ed.,) Topology, Geometry and Quantum Field Theory (Proceedings of the 2002 Oxford Symposium in Honour of the 60th Birthday of Graeme Segal). Cambridge: Cambridge University Press, 2004, pp. 421–577Google Scholar
- 37.Segal, G.: Topological field theory (``Stanford Notes''), http://www.cgtp.duke.edu/ITP99/segal/
- 38.Segal, G.: Fadeev's anomaly in Gauss's law. Oxford University PreprintGoogle Scholar
- 39.Singer, I.M.: Families of Dirac operators with applications to physics. In: The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque, pp. 323–340 (1985)Google Scholar
- 40.van Nieuwenhuizen, P.: Supergravity. Phys. Rep. 68, 189 (1981)CrossRefADSMathSciNetGoogle Scholar
- 41.Witten, E.: On flux quantization in M-theory and the effective action. J. Geom. Phys. 22, 1–13 (1997)CrossRefzbMATHMathSciNetADSGoogle Scholar
- 42.Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)CrossRefADSzbMATHMathSciNetGoogle Scholar
- 43.Wojciechowski, K.P.: The η-determinant and the additivity of the η-invariant on the smooth, self-adjoint Grassmannian. Commun. Math. Phys. 201, 423–444 (1999)CrossRefADSzbMATHMathSciNetGoogle Scholar