Advertisement

Communications in Mathematical Physics

, Volume 263, Issue 1, pp 89–132 | Cite as

Setting the Quantum Integrand of M-Theory

  • Daniel S. FreedEmail author
  • Gregory W. Moore
Article

Abstract

In anomaly-free quantum field theories the integrand in the bosonic functional integral—the exponential of the effective action after integrating out fermions—is often defined only up to a phase without an additional choice. We term this choice ``setting the quantum integrand''. In the low-energy approximation to M-theory the E 8-model for the C-field allows us to set the quantum integrand using geometric index theory. We derive mathematical results of independent interest about pfaffians of Dirac operators in 8k+3 dimensions, both on closed manifolds and manifolds with boundary. These theorems are used to set the quantum integrand of M-theory for closed manifolds and for compact manifolds with either temporal (global) or spatial (local) boundary conditions. In particular, we show that M-theory makes sense on arbitrary 11-manifolds with spatial boundary, generalizing the construction of heterotic M-theory on cylinders.

Keywords

Boundary Condition Neural Network Manifold Field Theory Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez-Gaumé, L., Della Pietra, S., Moore, G.: Anomalies and odd dimensions. Ann Phys 163, 288 (1985)CrossRefzbMATHADSGoogle Scholar
  2. 2.
    Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. I Math. Proc. Cambridge Philos. Soc. 77, 43–69 (1975) II Math. Proc. Cambridge Philos. Soc. 78, 405–432 (1975) III Math. Proc. Cambridge Philos. Soc. 79, 71–9 (1976)zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Atiyah, M.F., Singer, I.M.: Index theory for skew-adjoint Fredholm operators. Publ. Math. Inst. Hautes Etudes Sci. (Paris) 37, 5–26 (1969)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Bilal, A., Metzger, S.: Anomaly cancellation in M-theory: a critical review. Nucl.Phys. B 675, 416–446 (2003)CrossRefADSzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bismut, J.M., Freed, D.S.: The analysis of elliptic families I: Metrics and connections on determinant bundles. Commun. Math. Phys. 106, 159–176 (1986)CrossRefADSzbMATHMathSciNetGoogle Scholar
  6. 6.
    Brylinski, J.-L., Mclaughlin, D.: The geometry of degree four characteristic classes and of line bundles on loop space. Duke Math. J. 75, 603–638 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Carey, A.L., Murray, M.K.: Faddeev's anomaly and bundle gerbes. Lett. Math. Phys. 3 29–36 (1996)Google Scholar
  8. 8.
    Carey, A.L., Mickelsson, J., Murray, M.K.: Bundle gerbes applied to quantum field theory. Rev. Math. Phys. 12, 65–90 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dai, X., Freed, D.S.: η-invariants and determinant lines. J. Math. Phys, 5155–5194 (1994); Erratum, ibid 42, 2343–2344 (2001)Google Scholar
  10. 10.
    Deligne, P, Freed, D.S.: Classical field theory In: Deligne, P., Etingof, P., Freed, D.S., Jeffrey, L.C., Kazhdan, D., Morgan, J.W., Morrison, D.R., Witten, E. (eds.,) Quantum Fields and Strings: A Course for Mathematicians, 2 volumes. Providence, RI: American Mathematical Society, pp. 137–225 (1999)Google Scholar
  11. 11.
    Diaconescu, E., Freed, D.S., Moore, G.: The M-theory 3-form and E8 gauge theory. http://arxiv.org/list/th/0312069, 2003
  12. 12.
    Diaconescu, D.E., Moore, G.W., Witten, E.: E(8) gauge theory, and a derivation of K-theory from M-theory. Adv. Theor. Math. Phys. 6, 1031 (2003)MathSciNetGoogle Scholar
  13. 13.
    Faddeev, L.D.: Operator anomaly for the gauss law. Phys.Lett.B 145, 81–84 (1984)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Faddeev, L.D., Shatashvili, S.L.: Algebraic and Hamiltonian methods in the theory of nonabelian anomalies. Theor. Math. Phys. 60, 770–778 (1985) Teor. Mat. Fiz. 60, 206–217 (1984)CrossRefGoogle Scholar
  15. 15.
    Fradkin, E.S., Tseytlin, A.A.: Quantum properties of higher dimensional and dimensionally reduced supersymmetric theories. Nucl. Phys. B 227, 252 (1983)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Freed, D.S.: On determinant line bundles Mathematical Aspects of String Theory. In: Yau, S.T.(ed.,) Singapore: World Scientific Publishing, pp. 189–238 (1987)Google Scholar
  17. 17.
    Freed, D.S.: Dirac charge quantization and generalized differential cohomology. Surv. Differ. Geom., VII (2000), Cambridge, MA: International Press, pp. 129–194 (2002)Google Scholar
  18. 18.
    Freed, D.S.: K-Theory in Quantum Field Theory info. In: Freed, D.S., Jenquin, J.J. (eds.,) Current developments in mathematics, 2001, Somerville, MA: Int. Press, pp. 41–87 (2002)Google Scholar
  19. 19.
    Freed, D.S., Hopkins, M.J.: In preparationGoogle Scholar
  20. 20.
    Freed, D.S., Quinn, F.: Chern-Simons theory with finite gauge group. Commun. Math. Phys. 156, 435–472 (1993)CrossRefADSzbMATHMathSciNetGoogle Scholar
  21. 21.
    Hopkins, M.J., Singer, I.M.: Quadratic functions in geometry, topology, and M-theory. http://arxiv.org/list/math.AT/0211216, 2002
  22. 22.
    Horava, P., Witten, E.: Heterotic and Type I string dynamics from eleven dimensions. Nucl. Phys. B 460, 506–524 (1996)CrossRefADSzbMATHMathSciNetGoogle Scholar
  23. 23.
    Horava, P., Witten, E.: Eleven-dimensional supergravity on a manifold with boundary. Nucl. Phys. B 475, 94–114 (1996)CrossRefADSzbMATHMathSciNetGoogle Scholar
  24. 24.
    Jenquin, J.J.: Spin TQFTs and Chern-Simons gauge theory. Ph. D. thesis, 2004Google Scholar
  25. 25.
    Kallosh, R.: Modified Feynman rules in supergravity. Nucl. Phys. B 141 141 (1978)Google Scholar
  26. 26.
    Mickelsson, J., Scott, S.: Functorial QFT, gauge anomalies and the Dirac determinant bundle. Commun. Math. Phys. 219, 567–605 (2001)CrossRefADSzbMATHMathSciNetGoogle Scholar
  27. 27.
    Moss, I.G.: Boundary terms for supergravity and heterotic M-theory. http://arxiv.org/list/hep-th/0403106, 2004
  28. 28.
    Nielsen, N.: Ghost counting in supergravity. Nucl. Phys. B 140, 499 (1978)CrossRefADSGoogle Scholar
  29. 29.
    Powell, J.: Two theorems on the mapping class group of a surface. Proc. Amer. Math. Soc. 68, 347–350 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Quillen, Q.: Superconnections and the Chern character. Topology 24, 89–95 (1985)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Quinn, F.: Lectures on axiomatic topological quantum field theory. In: Geometry and quantum field theory (Park City, UT, 1991), IAS/Park City Math. Ser., 1, Providence, RI: Amer. Math. Soc., 1995, pp. 323–453Google Scholar
  32. 32.
    Redlich, N.: Gauge noninvariance and parity nonconservation of three-dimensional fermions Phys. Rev. Lett. 52, 18 (1984)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Redlich, N.: Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions. Phys. Rev. D 29, 2366 (1984)CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Scholl, M.: Ph. D. thesis, in preparationGoogle Scholar
  35. 35.
    Scott, S.G., Wojciechowski, K.P.: The ζ-determinant and Quillen determinant for a Dirac operator on a manifold with boundary. Geom. Funct. Anal. 10, 1202–1236 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Segal, G.: The definition of conformal field theory. In: Tillmann, U. (ed.,) Topology, Geometry and Quantum Field Theory (Proceedings of the 2002 Oxford Symposium in Honour of the 60th Birthday of Graeme Segal). Cambridge: Cambridge University Press, 2004, pp. 421–577Google Scholar
  37. 37.
    Segal, G.: Topological field theory (``Stanford Notes''), http://www.cgtp.duke.edu/ITP99/segal/
  38. 38.
    Segal, G.: Fadeev's anomaly in Gauss's law. Oxford University PreprintGoogle Scholar
  39. 39.
    Singer, I.M.: Families of Dirac operators with applications to physics. In: The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque, pp. 323–340 (1985)Google Scholar
  40. 40.
    van Nieuwenhuizen, P.: Supergravity. Phys. Rep. 68, 189 (1981)CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Witten, E.: On flux quantization in M-theory and the effective action. J. Geom. Phys. 22, 1–13 (1997)CrossRefzbMATHMathSciNetADSGoogle Scholar
  42. 42.
    Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)CrossRefADSzbMATHMathSciNetGoogle Scholar
  43. 43.
    Wojciechowski, K.P.: The η-determinant and the additivity of the η-invariant on the smooth, self-adjoint Grassmannian. Commun. Math. Phys. 201, 423–444 (1999)CrossRefADSzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Texas at AustinAustinUSA
  2. 2.Department of PhysicsRutgers UniversityPiscatawayUSA

Personalised recommendations