Communications in Mathematical Physics

, Volume 263, Issue 1, pp 217–258 | Cite as

Unitary Representations of Super Lie Groups and Applications to the Classification and Multiplet Structure of Super Particles

  • C. Carmeli
  • G. Cassinelli
  • A. Toigo
  • V.S. Varadarajan
Article

Abstract

It is well known that the category of super Lie groups (SLG) is equivalent to the category of super Harish-Chandra pairs (SHCP). Using this equivalence, we define the category of unitary representations (UR's) of a super Lie group. We give an extension of the classical inducing construction and Mackey imprimitivity theorem to this setting. We use our results to classify the irreducible unitary representations of semidirect products of super translation groups by classical Lie groups, in particular of the super Poincaré groups in arbitrary dimension and signature. Finally we compare our results with those in the physical literature on the structure and classification of super multiplets.

References

  1. 1.
    Deligne, P.: Notes on spinors. In: Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), Providence, RI: Amer. Math. Soc., 1999, pp. 99–135Google Scholar
  2. 2.
    Dixmier, J., Malliavin, P.: Factorisations de fonctions et de vecteurs indéfiniment différentiables. Bull. Sci. Math. (2), 102(4), 307–330 (1978)Google Scholar
  3. 3.
    Deligne, P., Morgan, J.W.: Notes on supersymmetry (following Joseph Bernstein). In: Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), Providence, RI: Amer. Math. Soc., 1999, pp. 41–97Google Scholar
  4. 4.
    Dobrev, V.K., Petkova, V.B.: All positive energy unitary irreducible representations of extended conformal supersymmetry. Phys. Lett. B 162(1–3), 127–132 (1985)Google Scholar
  5. 5.
    Dobrev, V.K., Petkova, V.B.: All positive energy unitary irreducible representations of the extended conformal superalgebra. In: Conformal groups and related symmetries: physical results and mathematical background (Clausthal-Zellerfeld, 1985), Vol. 261 of Lecture Notes in Phys., Berlin: Springer, 1986, pp. 300–308Google Scholar
  6. 6.
    Dobrev, V.K., Petkova, V.B.: Group-theoretical approach to extended conformal supersymmetry: function space realization and invariant differential operators. Fortschr. Phys. 35(7), 537–572 (1987)MathSciNetGoogle Scholar
  7. 7.
    Ferrara, S.: UCLA lectures on supersymmetry. 2001Google Scholar
  8. 8.
    Ferrara, S.: UCLA lectures on supersymmetry. 2003Google Scholar
  9. 9.
    Ferrara, S., Savoy, C.A., Zumino, B.: General massive multiplets in extended supersymmetry. Phys. Lett. B 100(5), 393–398 (1981)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Nelson, E.: Analytic vectors. Ann. Math. (2), 70, 572–615 (1959)Google Scholar
  11. 11.
    Salam, A., Strathdee, J.: Unitary representations of super-gauge symmetries. Nucl Phys. B80, 499–505 (1974)Google Scholar
  12. 12.
    Varadarajan, V.S.: Supersymmetry for mathematicians: an introduction, Vol. 11 of Courant Lecture Notes in Mathematics. New York: New York University Courant Institute of Mathematical Sciences, 2004Google Scholar
  13. 13.
    Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom. 17(4), 661–692 (1983)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • C. Carmeli
    • 1
  • G. Cassinelli
    • 1
  • A. Toigo
    • 1
  • V.S. Varadarajan
    • 2
  1. 1.Dipartimento di FisicaUniversità di Genova, I.N.F.N.GenovaItaly
  2. 2.Department of MathematicsUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations