Advertisement

Communications in Mathematical Physics

, Volume 262, Issue 3, pp 565–594 | Cite as

Renormalisation of Noncommutative ϕ 4-Theory by Multi-Scale Analysis

  • Vincent Rivasseau
  • Fabien Vignes-Tourneret
  • Raimar Wulkenhaar
Article

Abstract

In this paper we give a much more efficient proof that the real Euclidean ϕ 4-model on the four-dimensional Moyal plane is renormalisable to all orders. We prove rigorous bounds on the propagator which complete the previous renormalisation proof based on renormalisation group equations for non-local matrix models. On the other hand, our bounds permit a powerful multi-scale analysis of the resulting ribbon graphs. Here, the dual graphs play a particular rôle because the angular momentum conservation is conveniently represented in the dual picture. Choosing a spanning tree in the dual graph according to the scale attribution, we prove that the summation over the loop angular momenta can be performed at no cost so that the power-counting is reduced to the balance of the number of propagators versus the number of completely inner vertices in subgraphs of the dual graph.

Keywords

Neural Network Angular Momentum Span Tree Renormalisation Group Matrix Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schomerus, V.: D-branes and deformation quantization. JHEP 9906, 030 (1999)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Seiberg, N., Witten, E.: String theory and noncommutative geometry. JHEP 9909, 032 (1999)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Minwalla, S., Van Raamsdonk, M., Seiberg, N.: Noncommutative perturbative dynamics. JHEP 0002, 020 (2000)CrossRefADSGoogle Scholar
  4. 4.
    Chepelev, I., Roiban, R.: Convergence theorem for non-commutative Feynman graphs and renormalization. JHEP 0103, 001 (2001)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Grosse, H., Wulkenhaar, R.: Renormalisation of ϕ 4-theory on noncommutative ℝ4 in the matrix base. Commun. Math. Phys. 256, no. 2, 305–374 (2005)Google Scholar
  6. 6.
    Wilson, K.G., Kogut, J.B.: The renormalization group and the epsilon expansion. Phys. Rept. 12, 75 (1974)CrossRefADSGoogle Scholar
  7. 7.
    Polchinski, J.: Renormalization and effective Lagrangians. Nucl. Phys. B 231, 269 (1984)CrossRefADSGoogle Scholar
  8. 8.
    Grosse, H., Wulkenhaar, R.: Power-counting theorem for non-local matrix models and renormalisation. Commun. Math. Phys. 254, 91 (2005)CrossRefADSzbMATHMathSciNetGoogle Scholar
  9. 9.
    Langmann, E., Szabo, R.J.: Duality in scalar field theory on noncommutative phase spaces. Phys. Lett. B 533, 168 (2002)CrossRefADSzbMATHMathSciNetGoogle Scholar
  10. 10.
    Rivasseau, V.: From perturbative to constructive renormalization. Princeton, NJ: Princeton Univ. Press, 1991Google Scholar
  11. 11.
    Grosse, H., Wulkenhaar, R.: The β-function in duality-covariant noncommutative ϕ 4-theory. Eur. Phys. J. C 35, 277 (2004)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Langmann, E., Szabo, R.J., Zarembo, K.: Exact solution of quantum field theory on noncommutative phase spaces. JHEP 0401, 017 (2004)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Grosse, H., Wulkenhaar, R.: Renormalisation of ϕ 4-theory on noncommutative ℝ4 to all orders. Lett. Math. Phys. 71, no. 1, 13–26 (2005)Google Scholar
  14. 14.
    Rivasseau, V., Vignes-Tourneret, F.: Non-commutative renormalization. http://arxiv.org/abs/ hep-th/0409312, 2004 to appear in Proceedings of conference ``Rigorous Quantum Field Theory'' in honor of J. Bros (19–21 July 2004, Saclay)Google Scholar
  15. 15.
    Connes, A., Douglas, M. R., Schwarz, A.: ``Noncommutative geometry and matrix theory: Compactification on tori,'' JHEP 9802, 003 (1998) [arXiv:hep-th/9711162]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Vincent Rivasseau
    • 1
  • Fabien Vignes-Tourneret
    • 1
  • Raimar Wulkenhaar
    • 2
  1. 1.Laboratoire de Physique ThéoriqueUniversité Paris XIOrsay CedexFrance
  2. 2.Max-Planck-Institut für Mathematik in den NaturwissenschaftenGermany

Personalised recommendations