Communications in Mathematical Physics

, Volume 260, Issue 3, pp 613–640 | Cite as

Products of Floer Cohomology of Torus Fibers in Toric Fano Manifolds

Article

Abstract

We compute the ring structure of Floer cohomology groups of Lagrangian torus fibers in some toric Fano manifolds continuing the study of [CO]. Related A-formulas hold for a transversal choice of chains. Two different computations are provided: a direct calculation using the classification of holomorphic discs by Oh and the author in [CO], and another method by using an analogue of divisor equation in Gromov-Witten invariants to the case of discs. Floer cohomology rings are shown to be isomorphic to Clifford algebras, whose quadratic forms are given by the Hessians of functions W, which turn out to be the superpotentials of Landau-Ginzburg mirrors. In the case of Open image in new window , this proves the prediction made by Hori, Kapustin and Li by B-model calculations via physical arguments. The latter method also provides correspondence between higher derivatives of the superpotential of LG mirror with the higher products of the A(or L)-algebra of the Lagrangian submanifold.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cho, C.-H.: Holomorphic discs, spin structures and the Floer cohomology of the Clifford torus. Int. Math. Res. Not. 35, 1803–1843 (2004)CrossRefGoogle Scholar
  2. 2.
    Cho, C.-H., Oh, Y.-G.: Floer cohomology and disc instantons of Lagrangian torus fibers in toric Fano manifolds. http://arxiv.org/list/math.SG/0308225, 2003
  3. 3.
    Fukaya, K.: Morse homotopy, A-category and Floer homologies. In: Proceedings of GARC Workshop on Geometry and Topology, Kim, H. J. (ed.), Seoul: Seoul National University, 1933Google Scholar
  4. 4.
    Fukaya, K.: Deformation theory, homological algebra and mirror symmetry. In: Geometry and physics of branes. (Como, 2001), Ser. High Energy Phys. Cosmol. Gravit., Bristol: IOP, 2003, pp. 121–209Google Scholar
  5. 5.
    Fukaya, K., Oh, Y.-G.: Zero loop open strings in the cotangent bundle and Morse homotopy. Asian J. Math 1, 99–180 (1997)Google Scholar
  6. 6.
    Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian intersection Floer theory-anomaly and obstruction. Kyoto University preprint, 2000Google Scholar
  7. 7.
    Fukaya, K., Ono, K.: Arnold conjecture and Gromov-Witten invariants. Topology 38,933–1048 (1999)CrossRefGoogle Scholar
  8. 8.
    Guillemin, V., Pollack, A.: Differential Topology. Prentice-Hall, Inc., NJ: Englewood Cliffs, 1974Google Scholar
  9. 9.
    Hori, K.: Constraints for topological strings in D≥ 1. Nucl. Phys. B 439(1–2), 395–420 (1995)Google Scholar
  10. 10.
    Hori, K.: Linear models in supersymmetric D-branes. In: Proceedings of the KIAS conference-Mirror Symmetry and Symplectic Geometry (Seoul, 2000), Fukaya, K., Oh, Y.-G., Ono, K., Tian, G., (eds.), River Edge, NJ: World Sci. Publishing, 2001Google Scholar
  11. 11.
    Hori, K., Vafa, C.: Mirror symmetry. http://arxiv.org/list/hep-th/0002222, 2000
  12. 12.
    Kapustin, A., Li, Y.: D-branes in Landau-Ginzburg models and algebraic geometry. JHEP 0312, 005 (2005)Google Scholar
  13. 13.
    Kapustin, A., Li, Y.: Topological correlators in Landau-Ginzburg models with boundaries. Adv. Theor. Math. Phys. 7, 727–749 (2004)Google Scholar
  14. 14.
    Kontsevich, M.: Homological algebra of mirror symmetry. ICM-1994 Proceedings, Zürich: Birkhäuser, 1995Google Scholar
  15. 15.
    Kontsevich, M., Manin, Y.: Gromov-Witten classes, quantum cohomology, and enumerative geometry. Comm. Math. Phys. 164 (3), 525–562 (1994)CrossRefGoogle Scholar
  16. 16.
    Kwon, D., Oh, Y.-G.: Structure of the image of (pseudo)-holomorphic discs with totally real boundary condition. Commun. Anal. Geom. 8 (1), 31–82 (2000)Google Scholar
  17. 17.
    Lada, T., Markl, M.: Strongly homotopy Lie algebras. Comm. Algebra 23(6), 2147–2161 (1995)Google Scholar
  18. 18.
    Lada, T., Stasheff, J.: Introduction to SH Lie algebras for physicists. Int. J. Theor. Phys. 32(7), 1087–1103 (1993)CrossRefGoogle Scholar
  19. 19.
    McDuff, D., Salamon, D.A.: J-holomorphic Curves and Quantum Cohomology. American Mathematical Society, Colloquium Publications 52, Providence, RI: Amer. Math. Soc. 2004Google Scholar
  20. 20.
    Orlov, D.: Triangulated categories of singularities and D-branes in Landau-Gzinburg models. http://arxiv.org/list/math.AG/0302304, 2003
  21. 21.
    Oh, Y.-G.: Floer cohomology of Lagrangian intersections and pseudo-holomorphic discs I. Comm. Pure and Appl. Math. 46, 949–994 (1993); addenda, ibid, 48, 1299–1302 (1995)Google Scholar
  22. 22.
    Oh, Y.-G.: Floer cohomology, spectral sequence, and the Maslov class of Lagrangian embeddings. IMRN, 7, 305–346 (1996)Google Scholar
  23. 23.
    Stasheff, J.: Homotopy associativity of H-spaces. I, II. Trans. Amer. Math. Soc. 108, 275–292 (1963); ibid. 108, 293–312 (1963)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of MathematicsNorthwestern UniversityEvanstonUSA

Personalised recommendations