Advertisement

Communications in Mathematical Physics

, Volume 259, Issue 1, pp 1–44 | Cite as

Integrable Structure of the Dirichlet Boundary Problem in Multiply-Connected Domains

  • I. Krichever
  • A. Marshakov
  • A Zabrodin
Article

Abstract

We study the integrable structure of the Dirichlet boundary problem in two dimensions and extend the approach to the case of planar multiply-connected domains. The solution to the Dirichlet boundary problem in the multiply-connected case is given through a quasiclassical tau-function, which generalizes the tau-function of the dispersionless Toda hierarchy. It is shown to obey an infinite hierarchy of Hirota-like equations which directly follow from properties of the Dirichlet Green function and from the Fay identities. The relation to multi-support solutions of matrix models is briefly discussed.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Green Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hurwitz, A., Courant, R.: Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen. Herausgegeben und ergänzt durch einen Abschnitt über geometrische Funktionentheorie. Berlin-Heidelberg-New York: Springer-Verlag, 1964 (Russian translation, adapted by M.A. Evgrafov: Theory of functions, Moscow: Nauka, 1968)Google Scholar
  2. 2.
    Marshakov, A., Wiegmann, P., Zabrodin, A.: Commun. Math. Phys. 227, 131 (2002)CrossRefGoogle Scholar
  3. 3.
    Krichever, I.M.: Funct. Anal. Appl. 22, 200–213 (1989)CrossRefGoogle Scholar
  4. 4.
    Krichever, I.M.: Commun. Pure. Appl. Math. 47, 437 (1994)Google Scholar
  5. 5.
    Mineev-Weinstein, M., Wiegmann, P.B., Zabrodin, A.: Phys. Rev. Lett. 84, 5106 (2000)CrossRefGoogle Scholar
  6. 6.
    Wiegmann, P.B., Zabrodin, A.: Commun. Math. Phys. 213, 523 (2000)CrossRefGoogle Scholar
  7. 7.
    Boyarsky, A., Marshakov, A., Ruchayskiy, O., Wiegmann, P., Zabrodin, A.: Phys. Lett. B515, 483–492 (2001)Google Scholar
  8. 8.
    Krichever, I., Novikov, S.: Funct. Anal. Appl. 21, No 2, 46–63 (1987)Google Scholar
  9. 9.
    Fay, J.D.:“Theta Functions on Riemann Surfaces”. Lect. Notes in Mathematics 352, Berlin-Heidelberg-New York: Springer-Verlag, 1973Google Scholar
  10. 10.
    Hadamard, J.: Mém. présentés par divers savants à l’Acad. sci., 33, (1908)Google Scholar
  11. 11.
    Davis, P.J.: The Schwarz function and its applications. The Carus Mathematical Monographs, No. 17, Buffalo, N.Y.: The Math. Association of America, 1974Google Scholar
  12. 12.
    Krichever, I.: 2000, unpublishedGoogle Scholar
  13. 13.
    Takhtajan, L.: Lett. Math. Phys. 56, 181–228 (2001)CrossRefGoogle Scholar
  14. 14.
    Kostov, I.K., Krichever, I.M., Mineev-Weinstein, M., Wiegmann, P.B., Zabrodin, A.: τ-function for analytic curves. In: Random matrices and their applications, MSRI publications, 40, Cambridge: Cambridge Academic Press, 2001Google Scholar
  15. 15.
    Hille, E.: Analytic function theory. V.II, Oxford: Ginn and Company, 1962Google Scholar
  16. 16.
    Gibbons, J., Kodama, Y.: Proceedings of NATO ASI “Singular Limits of Dispersive Waves”. ed. N. Ercolani, London – New York: Plenum, 1994; Carroll, R., Kodama, Y.: J. Phys. A: Math. Gen. A28, 6373 (1995)Google Scholar
  17. 17.
    Takasaki, K., Takebe, T.: Rev. Math. Phys. 7, 743–808 (1995)CrossRefGoogle Scholar
  18. 18.
    Schiffer, M., Spencer, D.C.: Functionals of finite Riemann surfaces. Princeton, NJ: Princeton University Press, 1954Google Scholar
  19. 19.
    Gustafsson, B.: Acta Applicandae Mathematicae 1, 209–240 (1983)Google Scholar
  20. 20.
    Aharonov, D., Shapiro, H.: J. Anal. Math. 30, 39–73 (1976); Shapiro, H.: The Schwarz function and its generalization to higher dimensions. University of Arkansas Lecture Notes in the Mathematical Sciences, Volume 9, W.H. Summers, Series Editor, New York: A Wiley-Interscience Publication, John Wiley and Sons, 1992Google Scholar
  21. 21.
    Etingof, P., Varchenko, A.: Why does the boundary of a round drop becomes a curve of order four? University Lecture Series. 3, Providence, RI: American Mathematical Society, 1992Google Scholar
  22. 22.
    Kazakov, V., Marshakov, A.: J. Phys. A: Math. Gen. 36, 3107–3136 (2003)CrossRefGoogle Scholar
  23. 23.
    De Wit, B., Marshakov, A.: Theor. Math. Phys. 129, 1504 (2001) [Teor. Mat. Fiz. 129, 230 (2001)]CrossRefGoogle Scholar
  24. 24.
    Gakhov, F.: The boundary value problems. Moscow: Nauka, 1977 (in Russian)Google Scholar
  25. 25.
    Eynard, B.: Large N expansion of the 2-matrix model, multicut case. http://arxiv:org/list/math-ph/0307052, 2003
  26. 26.
    Bertola, M.: Free energy of the two-matrix model/dToda tau-function. Nucl. Phys. B669, 435–461 (2003)Google Scholar
  27. 27.
    Marshakov, A., Mironov, A., Morozov, A.: Phys. Lett. B389, 43–52 (1996); Braden, H., Marshakov, A.: Phys. Lett. B541, 376–383 (2002)Google Scholar
  28. 28.
    Gorsky, A., Marshakov, A., Mironov, A., Morozov, A.: Nucl. Phys. B527, 690–716 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA
  2. 2.Landau InstituteMoscowRussia
  3. 3.ITEPMoscowRussia
  4. 4.Max Planck Institute of MathematicsBonnGermany
  5. 5.Lebedev Physics InstituteMoscowRussia
  6. 6.Institute of Biochemical PhysicsMoscowRussia

Personalised recommendations