Communications in Mathematical Physics

, Volume 259, Issue 2, pp 475–509

Dispersive Estimates for Schrödinger Equations with Threshold Resonance and Eigenvalue

Article

Abstract

Let H=−Δ+V(x) be a three dimensional Schrödinger operator. We study the time decay in Lp spaces of scattering solutions eitHPcu, where Pc is the orthogonal projection onto the continuous spectral subspace of L2(R3) for H. Under suitable decay assumptions on V(x) it is shown that they satisfy the so-called Lp-Lq estimates ||eitHPcu||p≤(4π|t|)−3(1/2−1/p)||u||q for all 1≤q≤2≤p≤∞ with 1/p+1/q=1 if H has no threshold resonance and eigenvalue; and for all 3/2<q≤2≤p<3 if otherwise.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2(4), 151–218 (1975)Google Scholar
  2. 2.
    Artbazar, G., Yajima, K.: The Lp-continuity of wave operators for one dimensional Schrödinger operators. J. Math. Sci. Univ. Tokyo 7, 221–240 (2000)Google Scholar
  3. 3.
    Bergh, J., Löfström, J.: Interpolation spaces, an introduction. Berlin-Heidelberg-New York: Springer-Verlag, 1976Google Scholar
  4. 4.
    Cuccagna, S.: Stabilization of solutions to nonlinear Schrödinger equations. Commun. Pure Appl. Math. 54, 1110–1145 (2001)CrossRefGoogle Scholar
  5. 5.
    Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators with application to quantum mechanics and global geometry. Berlin: Springer-Verlag, 1987Google Scholar
  6. 6.
    Erdogan, M.B., Schlag, W.: Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three I. Dynamics of PDE, 1(4), 359 (2004)Google Scholar
  7. 7.
    Goldberg, M.: Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials. To appear in Geom. and Funct. Anal.Google Scholar
  8. 8.
    Goldberg, M., Schlag, W.: Dispersive estimates for Schrödinger operators in dimensions one and three. Commun. Math. Phys. 251, 157–178 (2004)CrossRefGoogle Scholar
  9. 9.
    Galtbayar, A., Jensen, A., Yajima, K.: Local time-decay of solutions to Schrödinger equation with time-periodic potentials. J. Stat. Phys. 116, 231–282 (2004)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Jensen, A., Kato, T.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46, 583–611 (1979)CrossRefGoogle Scholar
  11. 11.
    Jensen, A., Mourre, E., Perry, P.: Multiple commutator estimates and resolvent smoothness in quantum scattering theory. Ann. Inst. H. Poincaré Phys. Théor. 41, 207–225 (1984)Google Scholar
  12. 12.
    Journé, J.-L., Soffer, A., Sogge, C.D.: Decay estimates for Schrödinger operators. Commun. Pure Appl. Math. 40, 573–604 (1991)Google Scholar
  13. 13.
    Kato, T.: Growth properties of solutions of the reduced wave equation with a variable coefficient. Commun. Pure Appl. Math. 12, 403–425 (1959)Google Scholar
  14. 14.
    Kato, T.: Perturbation theory for linear operators. New York: Springer Verlag, 1966Google Scholar
  15. 15.
    Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Ann. Math. 162, 258–279 (1966)CrossRefGoogle Scholar
  16. 16.
    Kato, T.: On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 46, 113–129 (1987)Google Scholar
  17. 17.
    Keel, M., Tao, T.: End point Strichartz estimates. Am. J. Math. 120, 955–980 (1998)Google Scholar
  18. 18.
    Lions, J.L., Magenes, E.: Problémes aux limites non homogénes et applications I. Paris: Dunod, 1968Google Scholar
  19. 19.
    Murata, M.: Asymptotic expansions in time for solutions of Schrödinger-type equations. J. Funct. Anal. 49, 10–56 (1982)CrossRefGoogle Scholar
  20. 20.
    Nier, F., Soffer, A.: Dispersion and Strichartz estimates for some finite rank perturbations of the Laplace operator. J. Funct. Anal. 198, 511–535 (2003)CrossRefGoogle Scholar
  21. 21.
    O’Neil, R.: Convolution operators and L(p,q) spaces. Duke Math. J. 30, 129–142 (1963)CrossRefGoogle Scholar
  22. 22.
    Reed, M., Simon, B.: Methods of moderm mathemtical physics. Vol II, Fourier analysis, selfadjointness. New York-San Francisco-London: Academic Press, 1975Google Scholar
  23. 23.
    Reed, M., Simon, B.: Methods of moderm mathemtical physics. Vol III, Scattering theory. New York-San Francisco-London: Academic Press, 1979Google Scholar
  24. 24.
    Reed, M., Simon, B.: Methods of moderm mathemtical physics. Vol IV, Analysis of Operators. New York-San Francisco-London: Academic Press, 1978Google Scholar
  25. 25.
    Rodnianski, I., Schlag, W.: Time decay for solutions of Schrödinger equations with rough and time dependent potentials. Invent. Math. 155(3), 451–513 (2004)CrossRefGoogle Scholar
  26. 26.
    Rodnianski, I., Schlag, W., Soffer, A.: Dispersive analysis of charge transfer models. To appear in CPAMGoogle Scholar
  27. 27.
    Schlag, W.: Dispersive estimates for Schrödinger operators in dimension two. Commun. Math. Phys. 257, 87–117 (2005)CrossRefGoogle Scholar
  28. 28.
    Weder, R.: Lp-Lp estimates for the Schrödinger equations on the line and inverse scattering for the nonliner Schrödinger equation with a potential. J. Funct. Anal. 170, 37–68 (2000)CrossRefGoogle Scholar
  29. 29.
    Yajima, K.: The Wk,p-continuity of wave operators for Schrödinger operators. J. Math. Soc. Japan 47, 551–581 (1995)Google Scholar
  30. 30.
    Yajima, K.: The Wk,p-continuity of wave operators for Schrödinger operators III. J. Math. Sci. Univ. Tokyo 2, 311–346 (1995)Google Scholar
  31. 31.
    Yajima, K.: Lp-boundedness of wave operators for two dimensional Schrödinger operators. Commun. Math. Phys. 208, 125–152 (1999)CrossRefGoogle Scholar
  32. 32.
    Yajima, K.: Time Periodic Schrödinger equations, in Topics in the theory of Schrödinger operators, ed. H. Anaki and H. Ezawa, 9–69, World Scientific (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of MathematicsGakushuin UniversityTokyoJapan

Personalised recommendations