Advertisement

Communications in Mathematical Physics

, Volume 258, Issue 3, pp 541–565 | Cite as

Wavelet Analysis of Fractal Boundaries. Part 2: Multifractal Analysis

  • Stéphane JaffardEmail author
  • Clothilde Mélot
Article

Abstract

This second part deals with the global analysis of the boundary of domains Open image in new window . We develop methods for determining the dimensions of the sets where the local behaviors introduced in Part 1 occur. These methods are based on analogies with the thermodynamic formalism in statistical physics and lead to new classification tools for fractal domains.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arneodo, A., Bacry, E., Muzy, J-F.: The thermodynamics of fractals revisited with wavelets. Physica A 213, 232–275 (1995)Google Scholar
  2. 2.
    Aubry, J.-M., Jaffard, S.: Random wavelet series. Commun. Math. Phys. 227, 483–514 (2002)CrossRefGoogle Scholar
  3. 3.
    Brown, G., Michon G. Peyrière, J.: On the multifractal analysis of measures. J. Stat. Phys. 66, 775–790 (1992)CrossRefGoogle Scholar
  4. 4.
    Calderòn, A.P., Zygmund, A.: Local properties of solutions of elliptic partial differential equations. Studia Math. 20, 171–227 (1961)Google Scholar
  5. 5.
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Comm. Pure and App. Math. 41, 909–996 (1988)Google Scholar
  6. 6.
    Falconer, K.: Fractal geometry. New York: John Wiley and Sons, 1990Google Scholar
  7. 7.
    Halsey, T., Jensen, M., Kadanoff, L., Procaccia, I., Shraiman, B.: Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986)CrossRefPubMedGoogle Scholar
  8. 8.
    Jaffard, S.: Multifractal formalism for functions Part I. S.I.A.M. J. Math. Anal. 28(4), 944–970 (1997)Google Scholar
  9. 9.
    Jaffard, S.: Oscillation Spaces: Properties and applications to fractal and multifractal functions. J. Math. Phys. 39(8), 4129–4141 (1998)CrossRefGoogle Scholar
  10. 10.
    Jaffard, S.: Beyond Besov spaces Part 2: Oscillation spaces. Constructive Approximation 21, 29–61 (2004)Google Scholar
  11. 11.
    Jaffard, S.: Wavelet techniques in multifractal analysis. In: Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot. M. Lapidus, M. van Frankenhuysen, (eds.) Proceedings of Symposia in Pure Mathematics, Providence RI: AMS, 2004Google Scholar
  12. 12.
    Lévy-Véhel, J., Seuret, S.: The 2-microlocal formalism. In: Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot. M. Lapidus, M. van Frankenhuysen (eds.) Providence RI: Amer. Mat. Soc., 2004Google Scholar
  13. 13.
    Makarov, N.G.: On the distortion of boundary sets under conformal mappings. Proc. Lond. Math. Soc. 51 369–384 (1985)Google Scholar
  14. 14.
    Meyer, Y.: Ondelettes et opérateurs, Vol. 1. Paris: Hermann, 1990Google Scholar
  15. 15.
    Meyer, Y.: Wavelets, Vibrations and Scalings. CRM Ser. AMS, Vol. 9, Montréal: Presses de l’Université de Montréal, 1998Google Scholar
  16. 16.
    Mimouni, S.: Analyse fractale d’interfaces pour les instabilités de Raleigh-Taylor. Thèse de l’Ecole Polytechnique, 1995Google Scholar
  17. 17.
    Mimouni, S., Laval, G., Scheurer, B.: Fractal interface. EUROTHERM Seminar 39, Nantes, 1994Google Scholar
  18. 18.
    Mimouni, S., Laval, G., Scheurer, B., Jaffard, S.: Morphology of the mixing layer in the Raleigh-Taylor instability, In: Small scale structures in three-dimensional hydrodynamics and magnetohydrodynamic turbulence. Lect. Notes in Phys. 462 Berlin-Heidelberg NewYork: Springer, 1995, pp. 179–192Google Scholar
  19. 19.
    Parisi, G., Frisch, U.: On the singularity structure of fully developed turbulence; Appendix to Fully developed turbulence and intermittency, by U. Frisch; Proc. Int. Summer School Phys. Enrico Fermi, Amsterdam North Holland 1985, pp. 84–88Google Scholar
  20. 20.
    Tricot, C.: Two definitions of fractional dimension. Math. Proc. Camb. Philos. Soc. 57–74 (1982)Google Scholar
  21. 21.
    Triebel, H.: Theory of function spaces, II. Basel-Boston: Birkhäuser, 1992Google Scholar
  22. 22.
    Vassilicos, J.C.: The multispiral model of turbulence and intermitency. In: Topological aspects of the dynamics of fluids and plasmas. H.K. Moffat et al. (ed.) Dordrecht: Kluwer Acad. Pub., 1992, pp. 427–442Google Scholar
  23. 23.
    Vassilicos, J.C., Hunt, J.C.R.: Fractal dimensions and spectra of interfaces with application to turbulence. Proc. Roy. Soc. Series A 435(1895), 505–534 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Laboratoire d’Analyse et de Mathématiques AppliquéesUniversité Paris XIICréteil CedexFrance
  2. 2.LATP, CMIUniversité de Provence 39 rue F. Joliot-CurieFrance

Personalised recommendations