Communications in Mathematical Physics

, Volume 257, Issue 1, pp 29–42 | Cite as

Initial Data Engineering

  • Piotr T. Chruściel
  • James Isenberg
  • Daniel Pollack


We present a local gluing construction for general relativistic initial data sets. The method applies to generic initial data, in a sense which is made precise. In particular the trace of the extrinsic curvature is not assumed to be constant near the gluing points, which was the case for previous such constructions. No global conditions on the initial data sets such as compactness, completeness, or asymptotic conditions are imposed. As an application, we prove existence of spatially compact, maximal globally hyperbolic, vacuum space-times without any closed constant mean curvature spacelike hypersurface.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersson, L., Chruściel, P.T.: On asymptotic behavior of solutions of the constraint equations in general relativity with “hyperboloidal boundary conditions”. Dissert. Math. 355, 1–100 (1996)Google Scholar
  2. 2.
    Bartnik, R.: Regularity of variational maximal surfaces. Acta Math. 161, 145–181 (1988)Google Scholar
  3. 3.
    Bartnik, R.: Remarks on cosmological spacetimes and constant mean curvature surfaces. Commun. Math. Phys. 117, 615–624 (1988)CrossRefGoogle Scholar
  4. 4.
    Bartnik, R.: New definition of quasilocal mass. Phys. Rev. Lett. 62, 2346–2348 (1989)CrossRefPubMedGoogle Scholar
  5. 5.
    Bartnik, R.: Energy in general relativity, Tsing Hua Lectures on Geometry and Analysis (S.-T. Yau, ed.), Cambridge, MA: International Press, 1997Google Scholar
  6. 6.
    Beig, R., Chruściel, P.T.: Killing Initial Data. Class. Quantum. Grav. 14, A83–A92 (1996). A special issue in honour of Andrzej Trautman on the occasion of his 64th Birthday, Tafel, J. (ed.).Google Scholar
  7. 7.
    Beig, R., Chruściel, P.T., Schoen, R.: KIDs are non-generic. To appear in Ann. Henri Poincaré;, 2004
  8. 8.
    Berger, M., Ebin, D.: Some decompositions of the space of symmetric tensors on a Riemannian manifold. J. Diff. Geom. 3, 379–392 (1969)Google Scholar
  9. 9.
    Bray, H.L.: Proof of the Riemannian Penrose conjecture using the positive mass theorem. J. Diff. Geom. 59, 177–267 (2001).Google Scholar
  10. 10.
    Bray, H.L., Chruściel, P.T.: The Penrose inequality. In: 50 years of the Cauchy problem in general relativity, Chruściel, P.T., Friedrich, H. eds., Basel: Birkhaeuser, 2004Google Scholar
  11. 11.
    Brill, D.: On spacetimes without maximal surfaces. In: Proceedings of the third Marcel Grossmann meeting (Amsterdam), Hu Ning, ed., Amsterdam: North Holland, 1983, pp. 79–87Google Scholar
  12. 12.
    Chruściel, P.T., Delay, E.: On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. Mém. Soc. Math. de France. 94, 1–103 (2003)Google Scholar
  13. 13.
    Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214, 137–189 (2000)Google Scholar
  14. 14.
    Corvino, J., Schoen, R.: On the asymptotics for the vacuum Einstein constraint equations. To appear J. Diff. Geom.;, 2003
  15. 15.
    Eardley, D., Witt, D.: Unpublished, 1992Google Scholar
  16. 16.
    Isenberg, J.: Constant mean curvature solutions of the Einstein constraint equations on closed manifolds. Class. Quantum Grav. 12, 2249–2274 (1995)Google Scholar
  17. 17.
    Isenberg, J., Maxwell, D., Pollack, D.: A gluing construction for non-vacuum solutions of the Einstein constraint equations., 2005
  18. 18.
    Isenberg, J., Mazzeo, R., Pollack, D.: Gluing and wormholes for the Einstein constraint equations. Commun. Math. Phys. 231, 529–568 (2002)CrossRefGoogle Scholar
  19. 19.
    Isenberg, J., Mazzeo, R., Pollack, D.: On the topology of vacuum spacetimes. Annales Henri Poincaré 4, 369–383 (2003)Google Scholar
  20. 20.
    Joyce, D.: Constant scalar curvature metrics on connected sums. Int. J. Math. Sci. no. 7, 405–450 (2003)Google Scholar
  21. 21.
    Moncrief, V.: Spacetime symmetries and linearization stability of the Einstein equations I. J. Math. Phys. 16, 493–498 (1975)Google Scholar
  22. 22.
    Witt, D. M.: Vacuum space-times that admit no maximal slice. Phys. Rev. Lett. 57, 1386–1389 (1986)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Piotr T. Chruściel
    • 1
  • James Isenberg
    • 2
  • Daniel Pollack
    • 3
  1. 1.Dept. de MathématiquesUniversité de ToursTours Codex 1France
  2. 2.Department of PhysicsUniversity of OregonEugeneUSA
  3. 3.Mathematics DepartmentUniversity of WashingtonSeattleUSA

Personalised recommendations